扩散模型在图像生成方面表现出色,但它们的计算量大且训练耗时。在本文中,我们介绍了一种新型扩散模型,该模型受益于量子计算技术,可以减轻计算挑战并提高高能物理数据的生成性能。全量子扩散模型在前向过程中用随机酉矩阵取代高斯噪声,并在去噪架构的 U-Net 中引入变分量子电路。我们对来自大型强子对撞机的结构复杂的夸克和胶子喷流数据集进行了评估。结果表明,全量子和混合模型在喷流生成方面可与类似的经典模型相媲美,凸显了使用量子技术解决机器学习问题的潜力。
§简介。HIC的历史。 §LHC实验:Alice,LHCB,CMS和Atlas Physics可观察:§全球性能§重型夸克和高pt§quarkonia§photon和diloptonHIC的历史。§LHC实验:Alice,LHCB,CMS和Atlas Physics可观察:§全球性能§重型夸克和高pt§quarkonia§photon和dilopton
迷人的魅力,美丽的底部和夸克 - 格鲁恩等离子体在大型强调对撞机时代Santosh K. Das 1和Raghunath Sahoo 2摘要:在通过大爆炸创造了我们宇宙的几微秒之后,原始物质被认为是Matter-Matter Matter Matter-Matter-Matter-Matter-Matter-Matter-Matter-Matter-Matter-Matter-Matter-Matter-Matter-Matter-Matter-Matter-Matter-tocark和Gluons and Gluons and Gluons of Corcark和Gluons的汤。这将在实验室中通过以超相关速度碰撞重核来创建。可以在相对论重的重离子撞机(RHIC),美国纽约,纽约,美国纽约州布鲁克哈文国家实验室和大型的Hadron Collider(LHC)的Quark和Gluons的等离子体,称为Quark-Gluon等离子体(QGP)。重的夸克,即魅力和底部夸克,被认为是表征QGP的新型探针,因此被认为是量子染色体动力学(QCD)物质。重型夸克传输系数在理解QGP的性质中起着重要作用。核抑制因子和椭圆流的实验测量可以限制重夸克传输系数,这是现象学研究的关键成分,它们有助于解散不同的能量损失机制。我们对QGP中的重夸克阻力和扩散系数进行了总体视角,并讨论了它们的潜力,作为解散不同的强调机制的探针,并探测了在非中央重型离子碰撞中产生的初始电磁场。对未来测量结果进行了实验观点,并特别强调了重型风味,这是新技术发展的下一代探针。关键词:大爆炸,夸克 - 杜伦等离子体,重型离子碰撞,重型风味
取决于影响参数碰撞的大小为两种类型。这些是具有较小的影响参数的“中心”碰撞,具有较大影响参数的“外围”或“非中心碰撞”。当两个核碰撞并随后膨胀时,考虑了三种类型的横向流:径向横向流,定向流和椭圆流。径向横向流动以进行方位角的各向同性中心碰撞和非中央碰撞,各向异性流动,即允许定向和椭圆流。一个称为反应平面的平面,可以确定以描述那些不是各向同性方位角的事件,并且相对于该平面,计算了针对定向和椭圆流的颗粒各向异性。可以根据傅立叶膨胀来计算颗粒相对于该平面的方位角分布,而第一个谐波的幅度可以得出在Bevalac 10中发现的定向流。
基于输运模型,结合现实的三维体介质展开,研究了粲偶素定向流。非中心对称核-核碰撞可以产生具有对称破缺纵向分布的旋转夸克胶子等离子体(QGP)。在√sNN=200GeVAu+Au半中心碰撞中,粲偶素在初始硬过程中原始产生,它们主要被初始高温倾斜源解离,然后移出体介质,以保留介质的早期信息。原始产生的粲偶素的动量分布受QGP流体动力学膨胀的影响较小,因为其倾斜形状被稀释。这种有偏解离可以产生J/ψ和ψ(2S)的定向流,它们比轻带电强子和开重味子的值大得多。粲偶素定向流有助于量化原子核-原子核碰撞中 QGP 初始能量密度的快度奇数分布。