Vadim Bolshakov 恐惧控制的突触和神经元机制:海马-杏仁核相互作用的作用 陶武晨 GluD1 在大脑中的作用 11:00-11:30 咖啡休息,品尝当地甜点 11:30-1:35 第二节 感觉和神经调节 主席:庄汉婷 宋德华 Cav1.2-Filamin A 相互作用 Uhtaek Oh Tentonin 3,一种具有独特结构和门控特性的机械敏感通道 王云 转录组-形态学-功能整合分析揭示 TSPAN8 在初级感觉不同亚型轴突再生中双向调节 张旭 平行上升脊髓-橄榄通路用于感觉运动转化 李玉龙 通过构建多色基因编码的 GRAB 传感器监视体内神经调节 1:35-2:30 午餐休息 2:30-5:00 第五节转化医学与脑部疾病 主席:Bong-Kiun Kaang Tian-Ming Gao ATP 信号与抑郁症 Satoshi Kida cAMP 信号通路在 PTSD 中的作用 Min Zhuo ACC 和 AC1:过去、现在和未来 Yutian Wang 肽介导的蛋白质降解 - 研究工具和治疗应用 QI Wan 一种合成的 BBB 通透性三肽通过增加缺血性脑中的甘氨酸来提供神经保护 Ekaterina Pchitskaya 正常和正常脑组织中树突棘的 3D 形状和内质网功能分析
全基因组关联研究 (GWAS) 可以识别与性状相关的基因座,但识别致病基因可能是一个瓶颈,部分原因是连锁不平衡 (LD) 衰减缓慢。全转录组关联研究 (TWAS) 通过识别基因表达-表型关联或将基因表达数量性状基因座与 GWAS 结果整合来解决这一问题。在这里,我们使用自花授粉大豆 (Glycine max [L.] Merr.) 作为模型来评估 TWAS 在 LD 衰减缓慢的植物物种性状遗传解析中的应用。我们为大豆多样性面板生成了 RNA 测序数据,并识别了 29 286 个大豆基因的遗传表达调控。不同的 TWAS 解决方案受 LD 的影响较小,并且对表达源具有稳健性,可以识别与来自不同组织和发育阶段的性状相关的已知基因。通过 TWAS 鉴定出新的豆荚颜色基因 L2,并通过基因组编辑对其进行了功能验证。通过引入新的外显子比例特征,我们显著提高了由结构变异和可变剪接导致的表达变异的检测。因此,通过我们的 TWAS 方法鉴定出的基因表现出多种多样的因果变异,包括 SNP、插入或缺失、基因融合、拷贝数变异和可变剪接。使用这种方法,我们鉴定出与开花时间相关的基因,包括以前已知的基因和以前未与此特性关联的新基因,从而为 GWAS 的见解提供了补充。总之,这项研究支持将 TWAS 应用于 LD 衰减率较低的物种的候选基因鉴定。
ABI Acquired brain injury ABLV Australian bat lyssavirus ADEM Acute disseminated encephalomyelitis AES Acute encephalitis syndrome ALS Amyotrophic lateral sclerosis AMPAR α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor AMR Region of the Americas AR African region CASPR2 Contactin-associated protein-2 CFR Case fatality rate CMV Cytomegalovirus CNS Central nervous system CP Cerebral palsy CSF Cerebrospinal fluid D2R Dopamine-2 receptor DALYs Disability-adjusted life years DNA Deoxyribonucleic acid DPPX Dipeptidyl-peptidase-like protein-6 EAN European Academy of Neurology EBV Epstein Barr virus EBVL European bat lyssavirus ECDC European Centre for Disease Prevention and Control EEEV Eastern equine encephalitis virus EFNS European Federation of Neurological Societies EFTA European Free Trade Association ELISA Enzyme-linked immunosorbent assay EMR Eastern Mediterranean Region EU European Union EUR European Region EV Enterovirus GABAaR γ-aminobutyric acid-A receptor GABAbR γ-aminobutyric acid-B receptor GAVI Global Alliance for Vaccines and Immunisation GBD Global Burden of Disease GlyR Glycine receptor GOS Glasgow Outcome Scale GP General practitioner HHV-6 Human herpesvirus-6 HIC High-income country HSE Herpes simplex encephalitis HSV Herpes simplex virus ICD International Classification of Disease ICU Intensive care unit ID皮内IHME健康指标和评估研究所IM肌内IQR IQR四分位数iv静脉内静脉内静脉炎日本脑炎日本脑炎日本脑炎病毒病毒LCMV淋巴细胞性绒毛膜炎病毒lgi-1
摘要:氢键 (HB) 是生物系统中最丰富的基序。它们在确定蛋白质-配体结合亲和力和选择性方面起着关键作用。我们设计了两个对药物有益的 HB 数据库,数据库 A 包括约 12,000 个蛋白质-配体复合物,约 22,000 个 HB 及其几何形状,数据库 B 包括约 400 个蛋白质-配体复合物,约 2200 个 HB,它们的几何形状和键强度通过我们的局部振动模式分析确定。我们确定了七种主要的 HB 模式,可用作从头 QSAR 模型来预测特定蛋白质-配体复合物的结合亲和力。据报道,甘氨酸是供体和受体谱中最丰富的氨基酸残基,而 N–H · · · O 是数据库 A 中最常见的 HB 类型。HB 倾向于处于线性范围内,且线性 HB 被确定为最强的。HB 角在 100–110° 范围内的 HB 通常形成分子内五元环结构,表现出良好的疏水性和膜通透性。利用数据库 B,我们发现了 2200 多种蛋白质-配体 HB 的广义 Badger 关系。此外,每种氨基酸残基和配体功能团之间的强度和出现图为新颖的药物设计方法和确定药物选择性和亲和力提供了极具吸引力的可能性,它们也可作为命中到先导化合物过程的重要工具。
沼气是CO 2,CH 4和其他气体的小比例的混合物,是通过厌氧消化获得的生物燃料(AD)。沼气的生产通常被认为是黑匣子过程,因为涉及的一些微生物的作用和动力学仍然没有公开。先前在Micro4biogas项目(www.micro4biogas.eu)框架中的metataxonomic研究表明,在工业全尺度广告工厂中,MBA03是一种未经表征和未经文化的细菌分类群,非常普遍且丰富。令人惊讶的是,从未有过任何可培养的标本或基因组的报道,因此其在AD中的作用尚不清楚。在目前的工作中,测序了从厌氧消化园中得出的三十个样品,从而重建了108个元基因组组装的基因组(MAGS),可能属于MBA03。根据系统发育分析和基因组相似性指数,MBA03构成了一个新的细菌秩序,提出为Darwinibacteriales Ord。Nov。,其中包括Darwinibacter乙酰氧化物Gen。 11月,sp。 nov。 darwinibacteriaceae家族的家庭。 nov。,以及wallacebacter cryptica gen。 11月,sp。 nov。 Wallacebacteriaceae Fam。 nov。生态学研究确定AD过程是Darwinibacteriales的主要生态基础。 此外,代谢预测将darwinibacteraceae成员确定为推定的杂化乙酸乙酸氧化细菌(SAOB),因为它们编码了与甘氨酸裂解系统耦合的反向的木 - ljungdahl(W-L)途径。 这表明Darwinibacteraceae成员与营养古细菌合作在工业沼气植物中生产甲烷。Nov。,其中包括Darwinibacter乙酰氧化物Gen。 11月,sp。nov。 darwinibacteriaceae家族的家庭。nov。,以及wallacebacter cryptica gen。 11月,sp。nov。 Wallacebacteriaceae Fam。nov。生态学研究确定AD过程是Darwinibacteriales的主要生态基础。代谢预测将darwinibacteraceae成员确定为推定的杂化乙酸乙酸氧化细菌(SAOB),因为它们编码了与甘氨酸裂解系统耦合的反向的木 - ljungdahl(W-L)途径。这表明Darwinibacteraceae成员与营养古细菌合作在工业沼气植物中生产甲烷。总的来说,我们的发现表明达尔文尼比细菌是厌氧消化的潜在关键人物,并为这个新描述的细菌分类群的完整表征铺平了道路。
摘要:Hippuric Acid(Ha)是由苯甲酸(BA)肝甘氨酸偶联或苯基丙氨酸的肠道细菌代谢产生的代谢产物。ba通常是通过肠道微生物代谢途径产生的,摄入富含多酚化合物的植物来源的食物,即绿原酸或表沙素。它也可以在食品中存在,无论是自然还是人工添加为防腐剂。血浆和尿液HA水平已用于营养研究中,以估算习惯性水果和蔬菜摄入量,尤其是在儿童和代谢疾病的患者中。ha还被提出为衰老的生物标志物,因为它在血浆和尿液中的水平可能会受到几种与年龄相关的疾病(包括脆弱,肌肉减少症和认知障碍)的影响。具有身体虚弱的受试者通常表现出血浆和HA的尿液水平降低,尽管HA排泄趋于随着衰老而增加。相反,患有慢性肾脏疾病的受试者的HA清除率降低,HA保留可能会对循环,脑和肾脏产生毒性作用。关于年龄较大和多种病的老年患者,解释血浆和尿液中的HA水平可能会特别具有挑战性,因为HA处于饮食,肠道微生物群,肝脏和肾脏功能之间的十字路口。尽管这些考虑因素可能不会使HA成为衰老轨迹的理想生物标志物,但对较旧受试者的新陈代谢和清除的研究可能会提供有价值的信息,以解散饮食,肠道微生物群,脆弱和多种物种之间的复杂相互作用。
Bombyx Mori,驯化的桑sist虫,鳞翅目分子模型和最重要的经济昆虫。它正在成为应对生物学挑战的巨大分子遗传资源。在幼虫发育的最后阶段,蚕虫B产生大量丝蛋白。这些蛋白质存储在中间的丝腺中,并在第五龄的末端通过Spinneret驱动。丝绸纤维蛋白和Sericin是丝绸茧中的两种主要丝绸蛋白。丝皮纤维蛋白是一种由重链(H),轻链(L)和糖蛋白组成的纤维蛋白,由二硫键键连接的糖蛋白以及Sericin,sericin,Sericin,一种大分子蛋白,可作为粘合物质,可与丝虫Mori的生产核糖蛋白结合起来。在本综述中给出了Sericin的简短提要。丝绸塞他蛋白的结构,内容,溶解度,遗传学和特征是本综述的主要主题。在从丝绸茧中生产丝绸的脱发过程中,纺织品和苗条行业通常会丢弃大量的丝绸蛋白。由于Sericin具有高度亲水性,并且具有有用的生物学和生物相容性特性,例如抗菌,抗氧化剂,抗癌和抗酪氨酸酶特性,因此可以研究其应用。天冬氨酸,甘氨酸和丝氨酸是源自丝绸茧的有益氨基酸之一。薄膜,涂料和包装材料的创建表明,将塞他蛋白与其他生物材料结合使用的有效性。关键词:Bombyx Mori,蚕茧,生物聚合物和Sericin
人类蛋白质异质核糖核蛋白U(HNRNP U)也称为支架附着因子A(SAF-A)及其直系同源大鼠蛋白SP120是丰富的多功能核蛋白,可直接与DNA和RNA结合。富含精氨酸和甘氨酸的HNRNP U的C末端区域对于与RNA的相互作用至关重要,而SAF-A称为SAP结构域的N末端区域已归因于DNA结合。我们报告说,大鼠HNRNP U特异性和合作结合了称为核支架/基质相关区域(S/MAR)的富含的DNA,尽管其详细机制尚不清楚。在本研究分析中,HNRNP U缺失突变体首次揭示了富含arg-gly的C末端结构域(此处定义为“ RG结构域”)对于S/MAR-MAR-MAR-MAR-SELECHECTive DNA结合活性至关重要。rg域单独与S/MAR直接结合,并与SAP结构域共存具有协同作用。结合被Netropsin抑制,Netropsin是一种次要的凹槽粘合剂,偏爱富含S/MAR的成对,这表明RG结构域与S/MAR DNA的小凹槽相互作用。有趣的是,过量的RNA减弱了HNRNP U.综上所述,HNRNP U可能是RNA调节的S/MAR DNA识别的关键元素,从而有助于染色质区室的动态结构变化。
ARAF,丝氨酸/苏氨酸蛋白激酶 A–快速加速纤维肉瘤;ATP,三磷酸腺苷;AUC,浓度时间曲线下面积;AUC 0–last,从时间 0 到最后测量浓度的 AUC;BCRP,乳腺癌耐药蛋白转运蛋白;BID,每日两次;BRAF,v-Raf 鼠肉瘤病毒致癌基因同源物 B1;CNS,中枢神经系统;CRAF,丝氨酸/苏氨酸蛋白激酶 C-Raf;CSF,脑脊液;DFG,天冬氨酸-苯丙氨酸-甘氨酸;DMSO,二甲基亚砜;ELISA,酶联免疫吸附试验;ERK,细胞外信号调节激酶;GTP,三磷酸鸟苷;hrs,小时;IC 50,半数最大抑制浓度; Kp uu,非结合分配系数(游离脑浓度/游离血浆浓度);KRAS,Kirsten RAS;M,摩尔;MDR1,多药耐药突变转运体;MEK,丝裂原活化蛋白激酶激酶;NRAS,神经母细胞瘤 RAS;PERK,蛋白激酶 R 样内质网激酶;PK,药代动力学;po,口服;pRSK,磷酸化 RSK;QD,每日一次;RAF,快速加速性纤维肉瘤;RAS,大鼠肉瘤小 GTPase 蛋白;RSK,核糖体 s6 激酶;SEM,均值标准误差;t 1/2,半衰期;TGI,肿瘤生长抑制;T. sol,热力学溶解度;WT,野生型。
RNA 疗法已成为治疗多种疾病的下一代疗法。与小分子不同,RNA 靶向药物不受蛋白质上结合口袋可用性的限制,而是利用沃森-克里克 (WC) 碱基配对规则来识别靶 RNA 并调节基因表达。反义寡核苷酸 (ASO) 是一种治疗由基因改变引发的疾病的强大治疗方法。ASO 识别靶 RNA 上的同源位点以改变基因表达。九种单链 ASO 已获准用于临床,几种候选药物正在针对罕见疾病和常见疾病进行后期临床试验。已经研究了几种化学修饰,包括硫代磷酸酯、锁核酸、磷二酰胺、吗啉和肽核酸 (PNA),以实现有效的 RNA 靶向。PNA 是合成的 DNA 模拟物,其中脱氧核糖磷酸骨架被 N-(2-氨基乙基)-甘氨酸单元取代。PNA 的中性假肽骨架有助于增强结合亲和力和高生物稳定性。 PNA 与靶 RNA 中的互补位点杂交,并通过基于空间位阻的机制发挥作用。在过去的三十年中,人们探索了各种 PNA 设计、化学修饰和递送策略,以证明其作为有效且安全的 RNA 靶向平台的潜力。本综述涵盖了 PNA 介导的编码和非编码 RNA 靶向在众多治疗应用中的进展。
