1949 年,戈莱(Golay)[1-4]发现了两种重要的纠错码。一种是二进制码,现用符号 1[24,12,8] 表示,由 2 12 = 4096 个 24 个字符(每个字符为 0 或 1)的码字组成,码字之间的最小距离为 2/8;另一种是三元码,用符号 [12,6,6] 表示,由 3 6 = 729 个 12 个字符(每个字符为 0、1 或 2)的码字组成,码字之间的最小距离为 6。3 在被发现后的几十年里,这些代码推动了编码理论和数学的重大进步。在编码理论中,戈莱码是唯一在有限域上可以纠正码字中多个错误的完美代码。 4 在数学中,二进制 Golay 码导致了 24 维 Leech 格子的发现 [5],这种格子提供了该维度上最密集的全同球体堆积 [6](已知的其他此类堆积的唯一维度是 8)。此外,在群论中,正如 Preskill [4] 所说,Golay 码启动了一系列事件,这些事件导致了上个世纪后期对有限群(特别是“零散”群)的完整分类。量子计算的出现以及由此产生的对量子纠错的兴趣,重新引起了人们对古典密码学的兴趣,因为人们意识到后者的许多结果可以改编并用于
abtract“ 1960年代至1970年代之间的太空竞赛及其对太空的持久影响”是对整个前面几十年中科学进步的分析,以及太空探索对这些成就的影响。重点关注旅行者任务的远程系统系统,本文探讨了诸如彩色摄影,卫星和无线电波等主题。它将解释诸如Golay编码之类的概念,该概念允许从太空和无线电波传播更高的分辨率照片,从而使科学家可以测量我们太阳系中其他行星的特征(即大气组成)。本文将讨论公共支持以及对太空探索的资金如何随着时间的流逝而下降,以及这种趋势如何影响NASA等组织的进步。国际太空竞赛是人类历史上科学发展的重要组成部分,本文旨在为其成功和失败带来启示。
1. NCCN。慢性淋巴细胞白血病/小淋巴细胞白血病。版本 1.2025。2024 年 10 月 1 日发布。2. Salem JE 等人。与伊布替尼相关的心血管毒性。J Am Coll Cardiol。2019;74(13):1667-1678。3. Golay J 等人。特异性布鲁顿酪氨酸激酶抑制剂阿卡替尼 (ACP-196) 对具有 CD20 抗体的慢性淋巴细胞白血病 B 细胞显示出良好的体外活性。Haematologica。2017;102(10):e400-e403。4. Guo Y 等人。发现 zanubrutinib (BGB-3111),一种新型、强效、选择性布鲁顿酪氨酸激酶共价抑制剂。J Med Chem。2019;62(17):7923-7940。
奥地利:Wolfgang Gold、Gottfried Mandlburger 比利时:Eric Bayers 克罗地亚:Ivan Landek、Željko Bačič 塞浦路斯:Andreas Sokratous、Georgia Papathoma、Andreas Hadjiraftis、Dimitrios Skarlatos 丹麦:Jesper Weng Haar、Tessa 爱沙尼亚:Tambet Evelyn,艺术。 Uuemaa 芬兰:Juha Hyyppä、Juha Kareinen 法国:Bénédicte Bucher、Yannick Boucher 德国:Michael Hovenbitzer、Lars Bernard 爱尔兰:Paul Kane、Audrey Martin 挪威:Jon Arne Trollvik、Ivar Maalen-Johansen 波兰:Anna Bober、Krzysztof Bákuła:葡萄牙、Paulo帕特里西奥斯洛文尼亚:Dalibor Radovan、Peter Prešeren、Marjan Čeh 西班牙:Julian Delgado Hernández 瑞典:Tobias Lindholm、Anders Rydén、Heather Reese 瑞士:André Streilein、François Golay 荷兰:Jantien Stoter、Martijn Rijsdijk:Claudire 英国 >
卫星描述 我们的任务是两颗 3U 立方体卫星,尺寸为 10 x 10 x 37.6 厘米,重约 5.4 公斤,配备超高频收发器、甚高频收发器和 S 波段发射器。卫星使用超高频收发器(Gomspace AX100U)进行遥测、跟踪和指挥 (TTC) 和多普勒跟踪。信标使用超高频链路定期传输,以进行识别、健康状况监测和跟踪。甚高频收发器(Gomspace AX100V)作为 TTC、多普勒跟踪和卫星间链路的备份。此外,还包括一个 S 波段发射器,用于多普勒跟踪和高速数据下载图像,以确保任务和验证近距离操作。出于安全目的,我们将在上行链路信号中使用帧级基于哈希的消息认证 (HMAC)。传输帧格式使用附加同步标记 (ASM) 和 3 字节 GOLAY 字段进行帧同步和长度验证。此外,数据字段包括添加到每个传出帧的循环冗余校验(CRC32C)和 32 字节的 Reed-Solomon 分组码。
作者非常感谢以下个人和组织提供的宝贵意见和反馈:法国银行的 Nicolas Barbaroux;加拿大银行的 James Chapman;欧洲证券和市场管理局的 Anne Chone;波兰国家银行的 Adam Głogowski 和 Pawel Gasiorowski;CONSOB 国家银行的 Daniela Gariboldi;意大利银行的 Giuseppe Grande 和 Ilaria Supino;希腊银行的 Eleftheria Kostika;瑞士国家银行的 Sylvie Golay Markovich 和 Laura Felber;比利时 FOD Financiën - SPF Finances 的 Ariane Meunier;英国财政部的 Fayyaz Muneer、Tom Duggan 和 Dylan Cunningham;斯洛文尼亚银行的 Borut Poljšak;美国财政部的 Paull Randt 和 Irina Leonova; María Antonieta Campa Rojas,墨西哥银行;Necmettin Mete Sakallioglu,土耳其财政和财政部;Mai Santamaria 和 Jefferson Vieira,爱尔兰财政部;Ivan Keller 和 Naisa Baldissera May,欧盟委员会金融信息和市场管理局总司;Kris Nathanail,国际证监会组织;Denise Garcia Ocampo,国际清算银行。
2008 – 2010 年欧洲空间数据研究主席:Antonio Arozarena,西班牙 2009 – 2011 年副主席:Dieter Fritsch,德国 秘书长:Kevin Mooney,爱尔兰 代表 BUNY 国家: Michael:奥地利Franzen 比利时:Ingrid Vanden Berghe;克罗地亚吉恩剧院:Željko He�imovi�; Ivan Landek 塞浦路斯:Christos Zenonos; Michael Savvides 丹麦:Thorben Hansen; Lars Bodum 芬兰:Risto Kuittinen; Juha Vilhomaa 法国:让·菲利普·拉格朗日; Xavier Briottet 德国:Dietmar Grünreich;克莱门特·阿林格; Dieter Fritsch 冰岛:Magnus Guðmundsson; Eydís Líndal Finnbogadóttir 爱尔兰:Colin Bray、Ned Dwyer 意大利:Carlo Cannafoglia 荷兰:Jantien Stoter; Art-jan Klijnjan 挪威:Jon Arne Trollvik; Ivar Maalen-Johansen 西班牙:Antonio Arozarena、Francisco Papi Montanel 瑞典:Anders Olsson;安德斯·奥斯特曼 (Anders Ostman) 瑞士:弗朗索瓦·戈莱 (Francois Golay); André Streilein-Hurni 英国:Malcolm Havercroft; Jeremy Morley 委员会主席: 传感器、主要数据采集和地理配准:Michael Cramer,德国 图像分析和信息提取:Juha Hyyppä,芬兰 生产系统和流程:André Streilein-Hurni,瑞士 数据规范:Ulf Mike Jackson Networks,瑞典: , United王国
欧洲空间研究总裁2008年 - 2010年:西班牙副总裁Antonio Arozarena成员国:奥地利:迈克尔·弗朗岑比利时:Ingrid Vanden Berghe;让剧院克罗地亚:伊万·兰德克·塞浦路斯:Zenono的克里斯托斯;迈克尔·萨维斯(Michael Savides)丹麦:索本·汉森(Thorben Hansen); Lars Bodum Finland:Risto Kuittinen; Juha Vilhomaa法国:Jean-Philippe Lagrange;德国Xavier Briottet:DietmarGrünreich;克莱门特·阿林格; Dieter Fritsch冰岛:在Magnús中。爱尔兰:科林·布雷(Colin Bray),意大利内德·德威尔(Ned Dwyer):荷兰卡洛·坎纳菲利亚(Carlo Carlo Cannafoglia):詹蒂安·斯托特(Jantien Stoter); AART-JAN客户挪威:Jon Arne Trollvik;伊瓦尔·马伦·约汉森(Ivar Maalen-Johansen)西班牙:安东尼奥·阿罗萨雷纳(Antonio Arozarena),弗朗西斯科·帕皮(FranciscoPapíMontanel)瑞典:安德斯·奥尔森(Anders Olsson);安德斯·Östman瑞士:弗朗索瓦·戈莱(Francois Golay); AndréStrelein-Hurni英国:Malcolm Havercroft;杰里米·莫利(Jeremy Morley Comission)主席:传感器,主要数据获取和地理发作: Switcherland数据规格:瑞典网络服务ULF SANDGREN:迈克·杰克逊,英国
摘要 - 准确的工作量和资源预测是为了实现积极,动态和自适应资源分配,用于构建具有成本效益,能源良好和绿色云数据中心(CDC),为用户提供令人满意的优质服务,并为云提供者提供高收入。这很具有挑战性,因为CDC中急剧增加和大规模的工作量和资源使用的模式随时间而变化显着。当前的预测方法通常无法处理隐式噪声数据,并在工作量和资源时间序列中捕获非线性,长期和短期和空间特征,从而导致预测准确性有限。为解决这些问题,这项工作设计了一种名为VSBG的新型预测方法,该方法无缝且创新地结合了变分模式分解(VMD),Savitzky Golay(SG)滤波器(SG)滤波器,双向长期短期内存(LSTM)和GRID LSTM和GRID LSTM和GRID LSTM,以预测工作量和资源在CDC中的工作量和资源使用。vsbg在执行其预测之前,以四步骤的方式以四步方式整合VMD和SGFURTER。VSBG利用VMD将非机构工作负载和资源时间序列分为多种模式函数。然后,在VSBG中,这项工作设计了二次惩罚,用拉格朗日乘数将其最小化,并采用对数操作和SG滤波器来平滑第一个模式功能,以消除噪声干扰。最后,VSBG首次系统地捕获了具有两个Bilstm层的流量和复杂时间序列数据的深度和时间特征,在此之间,GridLSTM层在其中,从而准确地预测了CDC中的工作量和资源。具有不同现实世界数据集的广泛实验证明,VSBG在预测准确性和收敛速度上的整体最新算法都优于整体。
致谢 过去 16 个月,作为麻省理工学院的学生,无论是在学术还是个人层面,对我来说都是一段极其丰富的经历。作为一名初为人父的我,在麻省理工学院的学习之旅非常艰难,但我很庆幸一切都比预想的要好得多。我有机会在新加坡完成部分学位课程,这样我就可以花时间陪伴妻子,看着女儿在她第一年成长,这是我永远感激的事情。首先,我要感谢新加坡国防部和新加坡武装部队资助我在麻省理工学院的研究生学习。我还要感谢我所有的工作导师,他们多年来尽最大努力指导和支持我。接下来,我要感谢我的论文导师 Michael W. Golay 教授一年来的时间和指导。他对东盟地缘政治发展、能源格局和新加坡长期政策考虑的见解非常有帮助,发人深省。我还要感谢 John M. Reilly 博士的出色贡献,尤其是在电力市场的经济模型方面,以及对这篇论文的审阅。我还要感谢所有教过我的麻省理工学院的老师,因为他们的教学为这篇论文提供了灵感和基础。我要感谢系统设计和管理人员在整个课程中提供的帮助,以及我的同学们的友谊和智慧,让漫长的时间变得短暂。如果没有你们所有人,这些令人难以置信的经历就不可能实现。我最终要感谢我的妻子 Seok Han,她是我最大的支柱,在我离家这么远的时候照顾 Adora。最后,我要感谢我的家人和朋友的鼓励。陈志宇 (Jude) judechen@alum.mit.edu 2019 年 12 月