激光测振有助于验证游丝空间结构 美国宇航局正在开发大型超轻型结构,通常称为游丝空间结构。这些结构面积大,面密度小,这大大增加了地面测试的复杂性,因为地面操作界面和重力负荷会变得繁琐。激光测振已被证明是一种验证这些游丝结构结构特性的关键传感技术,因为它具有精度高、范围广和无接触的特性。 简介 美国宇航局多年来一直在开发游丝空间结构,以降低发射成本并利用特定概念的独特功能。例如,碟形天线(图 1)目前正在开发中,因为它们可以在太空中充气至 30 米大,然后刚性化以实现高数据速率通信。游丝结构的另一个例子是太阳帆,它是一种经济高效的无推进剂推进源。太阳帆跨越非常大的区域,以捕获光子的动量能量并利用它来推动航天器。太阳帆的推力虽然很小,但却是连续的,在整个任务期间都不需要推进剂。材料和超轻薄薄结构方面的最新进展使得大量有用的太空探索任务能够利用太阳帆推进。在 NASA 空间推进办公室 (ISP) 的指导下,ATK 空间系统、SRS 技术和 NASA 兰利研究中心的团队开发并评估了一种可扩展的太阳帆配置(图 2),以满足 NASA 未来的太空推进需求。在地面上测试太阳帆给工程师带来了三大挑战:测量比纸还薄的大面积表面;环境条件下的空气质量负荷很大,因此需要进行真空测试;高模态密度需要将表面划分为更易于管理的区域。本文将重点介绍在 NASA Glenn Plum Brook 设施的空间动力设施 (SPF) 真空室中完成的 20 米太阳帆概念动态测试的独特挑战。真空测量 Polytec 扫描激光测振仪系统 (PSV-400) 是用于测量振动模式的主要仪器。激光扫描头被放置在加压罐内,以保护其免受真空环境的影响(图 3)。罐内有一个窗口端口,激光从该窗口端口射出,强制空气冷却系统可防止过热。开发并实施了扫描镜系统 (SMS),该系统允许在真空室内从超过 60 米的距离对帆进行全场测量。SMS(图 3)安装在真空室设施顶部附近,位于测试物体上方,而测振仪头安装在
对飞机进行了研究。使用 VLAERO+ (一种涡格法商用计算机程序)计算了 Gossamer Albatross 的升力系数、阻力系数和力矩系数等气动数据,并将其与飞行试验数据进行了比较。对差异进行了分析和解释。尽管计算结果显示出与实验数据相似的趋势,但仍存在一些差异,这些差异可以用该方法的固有局限性来解释,例如线性和无粘性。不过,该程序允许通过加法和乘法因子进行某些校准。Gossamer 模型一旦校准,就可以放心地用于计算马赫数在 0.016 到 0.0248 之间、攻角在 -2 到 10 度之间的气动特性和稳定性分析。
M. Leipold,C.E。Garner,R。Freeland等。odissee,一项关于地球轨道上太阳帆的建议,Acta Artronautica 1999 45/4,557-566 D. Agnolon,Agnolon,研究概述太阳能航行示威者:Geosail,DLR/Esa,DLR/Esa,2008 N. Wolff,P。参见Feldt,P。Seefeldt,W。Bauer selterive solative solative of Selor for solarited of solaritive sol。在太阳能航行的进步中,第351-365页。Springer,2014年。P。Seefeldt,P。Spiez,T。Spröwitz等人,Gossamer-1:Mission Concept and Technology for Gossamer Spacecraft受控部署,太空研究的进展59.1(2017)(2017):434-456…ESA项目转移:
• 高价值卫星处于孤立状态,几乎没有维修机会来纠正问题、补充燃料等。[DARPA]。 • 重力阻碍了某些结构的制造(例如超薄镜、薄纱结构)。减少上升质量。为什么要发射可以在现场收获和/或制造的资源? • 发射整流罩限制了有效载荷的大小和重量,因此也限制了设计。模块化组装使大型和可进化的系统能够快速适应任务需求的变化或从诱发损坏中恢复。 – 一些模块类型可用于构建各种系统(例如平面阵列、望远镜、燃料库、平台) – 随用随付:多次发射、仪器更换/增强等。
摘要 传统的航空航天设计方法提供了快速有效的方法来生成新设计,但这些新设计通常与以前的设计相似。然而,对于真正创新的设计,需要一种不同的方法。本文建议,一种称为“参数分析”(PA)的通用概念设计方法可用于教授和实践创新航空航天设计。为了支持这一主张,我们调查了四个不同、创新和独特的案例研究,它们均由经验丰富的航空航天设计师进行:第二次世界大战的“炸坝”弹跳炸弹、20 世纪 70 年代的 Gossamer Condor 人力飞机、20 世纪 90 年代的非对称 Boomerang 双引擎飞机和 21 世纪初的 SpaceShipOne 亚轨道航天器。本文详细阐述了如何调整和应用案例研究方法以提供支持研究假设的证据,并展示了案例研究的分析结果。这表明,专业的航空航天设计师遵循了与 PA 类似的思维过程,即使是在不知不觉中,其中相似性是通过计算案例研究中可以证明存在的 PA 特征的数量来衡量的。还讨论了研究方法的优点和局限性。
1 吉森大学和马尔堡肺脏中心 (UGMLC)、肺健康研究所 (ILH);心肺研究所 (CPI);德国肺脏研究中心 (DZL) 成员,德国吉森;2 Gossamer Bio, Inc.,美国加利福尼亚州圣地亚哥;3 范德堡大学,范德堡大学医学中心,美国田纳西州纳什维尔;4 比塞特尔医院 (AP-HP),法国巴黎萨克雷大学,勒克里姆林-比塞特尔;5 西奈山心脏中心,西奈山伊坎医学院,西奈山医院,美国纽约州纽约市;6 加州大学洛杉矶分校,加州大学洛杉矶分校医学中心,美国加利福尼亚州洛杉矶;7 德克萨斯大学西南医学中心,美国德克萨斯州达拉斯;8 梅奥诊所,美国明尼苏达州罗彻斯特;9 帝国理工学院医疗保健 NHS 信托,英国伦敦汉默史密斯医院; 10 密歇根大学,美国密歇根州安娜堡; 11 布鲁塞尔自由大学,HUB – Hôpital Erasme,比利时布鲁塞尔; 12 斯坦福大学医学院,斯坦福医学院,斯坦福,加利福尼亚州,美国
提出了一种游丝航天器的姿态控制策略,其中控制扭矩由与地球磁场相互作用的导电支撑结构产生。建立了该结构的数学模型,其中总扭矩由作用在每个载流结构元件上的洛伦兹力之和得出。结果表明,不同的几何配置允许在三个正交方向上产生有效磁偶极矩。利用该模型,给出了动态模拟结果,以评估导电结构使用经典 Bdot 控制定律在轨道上自行翻滚的能力。然后研究了使用该姿态控制系统操纵轨道反射器的可能性。在一个简化模型中推导出极地轨道上的大型太阳反射器持续照射地球表面固定点所需的角加速度,并与导电结构可实现的角加速度进行了比较。然后通过模拟来评估导电结构是否能够实现轨道反射器的部分姿态控制,例如在黎明和黄昏时分,当地面太阳能发电场的输出较低时照亮它们。
我们探索了矩形 Kapton 薄膜上单个折痕的粘塑性行为,Kapton 薄膜是几种受折纸启发的薄纱空间结构设计中最基本的构建块。这是折痕薄膜机械行为中经常被忽视的一个组成部分,它会影响部署动力学和可重复性。首先,我们展示了一些实验,这些实验突出了 Kapton 的粘性特性对折痕产生过程的影响,以及折痕的平衡角度如何由塑性和粘度的组合决定。作为实验的一部分,我们建立了一个强大的实验程序,能够创建可重复的折痕。然后,我们将之前的建模工作扩展到一种简单的粘塑性材料中,该材料结合了标准线性模型和摩擦元素来模拟永久变形。使用一系列 Kapton 松弛测试校准材料模型。然后,我们使用它来模拟我们的折痕实验,使用商用有限元包中的 1D 梁元素。尽管定量差异仍然很大,但我们的分析能够捕捉到实验中观察到的趋势。我们的结果强调需要对聚合物薄膜的粘塑性进行进一步的实验和建模。
MSCI USA INDEX 新增 删除 4D MOLECULAR 908 DEVICES AFFIRM HOLDINGS A AECOM ALTA EQUIPMENT GROUP ALTO INGREDIENTS INC ARDELYX AMMO ARHAUS A AXON ENTERPRISE BIOHAVEN BARK BLUE BIRD (US) BEACHBODY COMPANY A BLUEGREEN VAC HLD BIOVENTUS COMPASS THERAPEUTICS CARDLYTICS CYMABAY THERAPEUTICS CELULARITY DISTRIBUTION SOLN GRP CONTAINER STORE GROUP EVERQUOTE A EASTMAN KODAK F&G ANNUITIES & LIFE EDGIO FTAI AVIATION F45 TRAINING HOLDINGS HASHICORP A GENEDX HOLDINGS A IVANHOE ELECTRIC GENERATION BIO JANUX THERAPEUTICS GOSSAMER BIO LINCOLN NATIONAL CORP GRACO LUMEN TECHNOLOGIES GREENLIGHT BIOSCIENCES OIL STATES INTERNATIONAL HELIOGEN POSEIDA THERAPEUTICS HONEST COMPANY PRIME MEDICINE HUMACYTE A SATIXFY COMMUNICATIONS INDUSTRIAL LOGIS PPTYS SENTINELONE INC A INNOVID A SIGHT SCIENCES INOTIV SYMBOTIC A LANDS' END TIPTREE LORDSTON MOTORS CORP A VIKING THERAPEUTICS MARKFORGED HOLDING WESTERN UNION MEIRAGTX HOLDINGS ZYMEWORKS (US) NEXTNAV ZYNEX NKARTA OCUGEN OPTIMIZERX PLAYTIKA HOLDING CORP QUANTUM-SI A RELIANCE STEEL & ALUM SARCOS TECH & ROBO CORP SKILLSOFT A SKILLZ 纹身厨师 TORO CO TUPPERWARE BRANDS 联合治疗公司 VERA THERAPEUTICS A WW INTERNATIONAL Y MABS THERAPEUTICS
1密歇根大学,美国米亚,安阿伯; Gossemer Bio,Inc。美国加利福尼亚州圣地亚哥; 3医院医院/威尔·康奈尔医学,美国德克萨斯州和平; 10月12日10月12日10月12日10月12日10月12日10月12日,美国东南部奥马哈市医学中心大学的4个大学医院; 6美国俄克拉荷马州俄克拉荷马州俄克拉荷马州的Integris Health Health肺动脉高压中心; 7犹他州卫生大学,盐湖城,美国犹他州; 。美国加利福尼亚州圣礼医学中心; 10山西奈心脏。 11加利福尼亚大学洛杉矶分校,美国加利福尼亚州;美国德克萨斯州达拉斯市Dayswestern Center医疗中心; 5月13日,美国明尼苏达州罗切斯特诊所; 14 CPI;德国盖森; 15美国田纳西州纳什维尔的Banderbilt大学医学中心; 16帝国健康,好的; 17没有布鲁克斯大学,huba - 18 19