高效生产、分配和消耗能源是我们这个时代面临的最重要挑战之一。随着分布式发电 (DG) 在全球能源结构中的重要性日益增加,生产水平比以往任何时候都更难预测。为了避免损失或停电,必须找到新的解决方案:让需求适应生产,而不是相反,这种做法越来越受欢迎,可以提高电网的运行效率。赋予需求曲线所需形状的概念被称为需求侧管理 (DSM) [Kreith and Goswami,2016],它可以通过多种技术来实现。在这些技术中,负荷转移包括转移部分需求,方法是提前或推迟电力消耗 [Wang et al.,2016]。在本文中,负荷转移是唯一考虑的 DSM 技术。当然,应用 DSM 技术只能在智能电网环境中进行,在智能电网环境中,广泛的通信手段确保配电网络各个参与者之间的数据传输,特别是在能源供应商和消费者之间 [Farhangi,2010,Ka-balci,2016]。在 Alekseeva 等人 [2018] 的研究中,电力供应商的目标是最大化其利润,因为他们知道其客户将根据供应商提供的价格优化其消费。在 Afşar 等人 [2016] 的研究中也发现了类似的模式,其中供应商的目标在于 m
具有增强词语表示的编码器架构,载于 Springer Applied Intelligence,2022 年。4. S. Sarkar、DP Mukherjee 和 A. Chakrabarti,“强化学习用于足球传球检测和控球统计数据生成”,载于 IEEE Transactions on Cognitive and Developmental Systems,2022 年,doi:10.1109/TCDS.2022.3194103。 5. M. Rakshit、S. Bhattacharjee、G. Garai、A Chakrabarti,“正交频分复用系统中基于音调预留的峰值与平均功率比降低技术的新型差分进化算法”,Swarm and Evolutionary Computation,爱思唯尔,第 72 卷,2022 年 7 月 6. A. Saha、R. Majumdar、D. Saha、A. Chakrabarti 和 S. Sur-Kolay,“具有 n-qudit Toffoli 门高级分解的 d-ary Grover 算法的渐近改进电路”,Phys. Rev. A,第 72 卷。 105,062453 – 2022 年 6 月 28 日发布。7. AK Das、B Chakraborty、S Goswami、A Chakrabarti,“一种基于模糊集的有效特征选择方法”,模糊集与系统,爱思唯尔,印刷中,2022 年。8. T. Chatterjee、A. Das、SI Mohtashim、A. Saha、A. Chakrabarti,“Qurzon:基于分而治之的分布式量子系统量子编译器原型”,Springer Nature Computer. Science,第 3 卷,323,2022 年。9. S. Basu、A. Saha、A. Chakrabarti 和 S. Sur-Kolay,“i-QER:一种减少量子误差的智能方法”,ACM Transactions on Quantum Computing,已接受(2022 年 5 月)。
来自查mu中央大学的Cujammu Astro团队已被选中参加2024年4月17日在古吉拉特邦艾哈迈达巴德举行的2024年空间罐头学生比赛的最后一轮比赛。查mu中央大学副校长Sanjeev Jain教授赞扬了团队,强调了空间内Cansat印度学生竞争在促进创新方面的重要性。 他强调了竞争对手在为学生提供展示自己的才能和创造力的平台方面的作用,这对于磨练自己的技能和为空间行业的挑战做准备至关重要。 Jain教授强调了赋予下一代太空爱好者并为印度自力更生太空劳动力发展做出贡献的重要性。 该大学的Cujammu Astro团队表明其致力于促进创新并为学生提供在太空科学技术领域脱颖而出的机会。 由八人组成的团队包括物理部的Anmol Kumar,Devansh Dubey和Rabinath Goswami,以及Arpan Dey,Manish Kumar,Shalini Gupta,Iha Mishra,Iha Mishra和Amritansh Bharti以及B.Tech的B.Tech(ECE和Avionicswher)。 他们正在根据Vinay Kumar教授(Dean,Sciences and Hod,物理系)和Rakesh Kumar Jha教授(ECE,ECE部门)的指导工作。 与印度国家空间促进和授权中心(空间)组织的空间罐头学生竞赛与印度宇航学会(ASI)联合组织,旨在激发下一代太空爱好者和太空科学技术的创新。查mu中央大学副校长Sanjeev Jain教授赞扬了团队,强调了空间内Cansat印度学生竞争在促进创新方面的重要性。他强调了竞争对手在为学生提供展示自己的才能和创造力的平台方面的作用,这对于磨练自己的技能和为空间行业的挑战做准备至关重要。Jain教授强调了赋予下一代太空爱好者并为印度自力更生太空劳动力发展做出贡献的重要性。该大学的Cujammu Astro团队表明其致力于促进创新并为学生提供在太空科学技术领域脱颖而出的机会。由八人组成的团队包括物理部的Anmol Kumar,Devansh Dubey和Rabinath Goswami,以及Arpan Dey,Manish Kumar,Shalini Gupta,Iha Mishra,Iha Mishra和Amritansh Bharti以及B.Tech的B.Tech(ECE和Avionicswher)。他们正在根据Vinay Kumar教授(Dean,Sciences and Hod,物理系)和Rakesh Kumar Jha教授(ECE,ECE部门)的指导工作。与印度国家空间促进和授权中心(空间)组织的空间罐头学生竞赛与印度宇航学会(ASI)联合组织,旨在激发下一代太空爱好者和太空科学技术的创新。竞争为学生提供了一个展示自己的才华和创造力的平台,为他们的空间行业挑战做准备。竞争将由ISRO主席,秘书,Shri S Somanath,ASI总统和空间董事长Pawan Goenka博士提出。
作者谨向 Space Florida 和 NewSpace New Mexico 表示深切的谢意和赞赏,感谢他们在佛罗里达州卡纳维拉尔角和新墨西哥州阿尔伯克基举办了 2022 年太空工业基地状况研讨会;并感谢所有与会者,无论是现场还是虚拟的,他们花时间和资源与六个工作组中的每一个分享他们的观察和见解。如果没有工作组主席和联合主席的辛勤努力,研讨会和本报告就不可能实现:Russ Teehan、Chris Paul、Rogan Shimmin、Karl Stolleis、Samantha Glassner、Pav Singh、Katherine Koleski、Barry Kirkendall、James Winter、Ryan Weed、Dave Barnaby、GP Sandhoo、Scott Erwin、Casey DeRaad、Dale Ketcham 和 Helen Park。其中也离不开我们的客座演讲者和小组成员的杰出贡献:Bill Nelson、Bhavya Lal、Mike Brown、Bruce Cahan、Namrata Goswami、Robbie Schingler、Brian Weeden、Mark Jelonek、Rick Tumlinson、Chris Paul、Steve Nixon、Jason Aspiotis、Juli Lawless、John Wagner、Steve Wood、Peter Wegner、Amy Hopkins、Brian Flewelling、John Moberly、Shiloh Dockstader、Lee Steinke、Christos Chrisodoulou、Tom Caudill、Maria Tanner、Megan Crawford、Jared Rieckewald、Cameo Lance、Jim Keravala、Brian Weeden、Mark Jelonek、Lisa Rich、Meagan Crawford 和 Nicholas Eftimiades。如果没有 Scott Maethner、Arial DeHerrera、Erika Hecht、Andy Germain、Jamie Holm、Emily Maethner 和 Andrew MacKenz 的大力支持,虚拟研讨会就不可能实现
1 Ansh Nikhra 2000910200018 Rxlogix 2 Ayushi Ojha 2000910200028 K&S Partners,Emerson 3 Shruuti Mittal 2000910200095 Newgen 4 Utkarsh Singh 200091010200102001020010200107 K&S Partners,Samsunk 5 Yashaswini Srivastava 2000910200113 Newgen 6 Abhik Mourya 2000910210001 Paytm 7 Abhishek Singh Chauhan 2000910210003 K&S Partners 8 ATI GUPTA 20009101010016 CADENCE 9 RIII 9 RIIII Agrawal 2000910210043 UKG 10 Aaditya Pratap Malik 2000910310001 TCS Ninja 11 Aakarsh Gupta 2000910310002 Spark Minda,TCS Ninja 12 Abhishek Maurya Maurya 2000910101010101010101010 Spark Minda 13 2000910310017 Spark Minda 14 Aditya Singh 2000910310021 Akash Gupta 2000910310027 Spark Minda 16 Akash Shukla 2000910310029 Newgen 17 17 17 17 17 17 17 171010101010101010MM Bansal 2000910310031 Quontplay 19 Aman Maurya 2000910310032 Newgen 20 Amish Verma 2000910310033 Newgen 21 Amisha Pandney 2000910310034 UKG 22 AMIT GANGWAR Kandwal 2000910310042 Paytm 24 Anukriti Jaiswal 2000910310043 Acencencencenture,Newgen 25 Anushka Sribastava 200091010045 Accenture 26 Arnika Sharma Sharma 2000910310046 Immerson 27 2000910310054 Ericsson 28 Asmita Rai 2000910310055 K&S Partners 29 Ayush Narayan Sinha 2000910310057 Accenture,Newgen 30 Divyansh Goenka Goenka Goenka 2000910310063 UKG 31 ukg 31 Ggaurang tygaurang tygaurang tygaurang tygaurang tygaurang tygaurang tygaurang tygaurang tygaurang tygaurang tygaurang tygauragigigigigigiii 2000910310068 PAYTM 32 GAUURAV MISHRA 2000910310069 DACBY 33 HARSHIL AWASTHI 2000910310074 ACPENTURE 34 HARSHITA 2000910310075 NEWGEN NEWGEN 35 HRDYANSH PANDEY 200091010078 SHIN SHIN SHIN SHIN SHIN SHIN SHIN SHIN SHIN SHIN学习36 Hrithik Yadav 2000910310079 Avaada 37 Jatin Kumar Sharma 2000910310081 Persist Ventures
期刊出版物列表: 1. Divyaprakash、Mohit Garg、Ajeet Kumar、Amitabh Bhattacharya,《流体浸没式柔性细丝的计算建模综述》,《印度科学研究所杂志》(已接受) 2. Md Intaf Alam、Ajeet Kumar,《螺旋棒的均匀伸展扭转》,《国际固体与结构杂志》,295 (2024),112817 3. Roushan Kumar、Vivek Agarwal、Ajeet Kumar,《一种获得以特殊 Cosserat 棒为模型的条带非线性弹性本构关系的计算方法》,《应用力学与工程计算机方法》,418 (2024),116553 4. Darius Diogo Barreto、Ajeet Kumar,《一种结合自由空间电能的电弹性 Kirchhoff 棒理论》,《国际固体与结构杂志》, 262-263 (2023),112045 5. Vinayak, Smriti, Ajeet Kumar,均匀应变各向异性弹塑性杆:根据杆变量确定弹塑性本构关系和屈服面,欧洲力学杂志 A/固体,98 (2023),104867 6. Raushan Singh, Abhishek Arora, Ajeet Kumar,一种用于获得具有表面能的特殊 Cosserat 杆的非线性弹性本构关系的计算框架,应用力学和工程中的计算机方法,398 (2022),115256 7. Ludwig Herrnbock, Ajeet Kumar, Paul Steinmann,双尺度离线和在线方法实现几何精确的弹塑性杆,计算力学,71 (2023),1-24 8. Vaibhav Kaushik、Ajeet Kumar、Nitya Nand Goswami、Vaishali Gode、Sudhakar Mhaskar、Yash Kamath,通过头发蓬松度量化了解椰子发油的益处,国际化妆品科学杂志,44 (2022),289-298 9. Mohit Garg、Ajeet Kumar,斯托克斯流中特殊 Cosserat 细丝运动的细长体理论,固体数学与力学,28 (2023),692-729
第2页 - ITMA 2023展览空间已预订•凯文·麦考伊(Kevin McCoy)先生,副总裁,新资产负责人(自动化和数字未来)•帕里克希特·高斯瓦米(Parikshit Goswami)教授,哈德斯菲尔德大学技术纺织品教授(高级材料)Innovator Xchange将于9月9日至13日举行。与ITMA 2023一起举行的其他亮点是ITMA可持续创新奖,创新视频展示柜,ITMA论坛和合作伙伴活动。有关上述活动的更多信息,请访问www.itma.com/events。在线ITMA 2023访问者注册开放。游客可以享受早鸟徽章率,直到2023年5月7日在线注册。凭借徽章,他们将能够从2023年3月8日从2023年3月8日访问ITMACONNECT平台来计划他们的展览访问。访问者可以探索参展商的数字空间,聊天并预约即可访问。查询,请发送电子邮件至visitor@itma.com。关于Cematex&Itma,欧洲纺织机械制造商委员会(Cematex)包括来自比利时,法国,德国,意大利,荷兰,荷兰,西班牙,瑞典,瑞典,瑞士和英国的国家纺织机械协会。它是ITMA和ITMA亚洲的所有者。考虑了纺织机械展览的“奥运会”,ITMA拥有73年的历史,用于展示最新技术的纺织品和服装制作过程。它在欧洲每四年举行一次。关于总部位于布鲁塞尔的ITMA服务与新加坡的一家子公司,ITMA Services是ITMA 2023和未来ITMA品牌展览的指定组织者。联系人:它是由在组织ITMA和世界其他主要贸易展览中拥有丰富经验的专业人士管理的。它旨在维护和扩展ITMA独特的销售主张以及与全球受众的相关性。由Cematex和ITMA服务发布。
作者谨向 Space Florida 和 NewSpace New Mexico 表示深切的感谢和赞赏,感谢他们在佛罗里达州卡纳维拉尔角和新墨西哥州阿尔伯克基举办了 2022 年太空工业基地状况研讨会;并感谢所有与会者,无论是现场还是虚拟的,他们花时间和资源与六个工作组中的每一个分享他们的观察和见解。如果没有工作组主席和联合主席的辛勤努力,研讨会和本报告就不可能实现:Russ Teehan、Chris Paul、Rogan Shimmin、Karl Stolleis、Samantha Glassner、Pav Singh、Katherine Koleski、Barry Kirkendall、James Winter、Ryan Weed、Dave Barnaby、GP Sandhoo、Scott Erwin、Casey DeRaad、Dale Ketcham 和 Helen Park。这也离不开我们的客座演讲者和小组成员的杰出贡献:Bill Nelson、Bhavya Lal、Mike Brown、Bruce Cahan、Namrata Goswami、Robbie Schingler、Brian Weeden、Mark Jelonek、Rick Tumlinson、Chris Paul、Steve Nixon、Jason Aspiotis、Juli Lawless、John Wagner、Steve Wood、Peter Wegner、Amy Hopkins、Brian Flewelling、John Moberly、Shiloh Dockstader、Lee Steinke、Christos Chrisodoulou、Tom Caudill、Maria Tanner、Megan Crawford、Jared Rieckewald、Cameo Lance、Jim Keravala、Brian Weeden、Mark Jelonek、Lisa Rich、Meagan Crawford 和 Nicholas Eftimiades。如果没有 Scott Maethner、Arial DeHerrera、Erika Hecht、Andy Germain、Jamie Holm、Emily Maethner、Andrew MacKenzie、Joe Pomo、Nicole Sena、Carol Welsch、Zachariah Sena、Garrett Rose、Rex Ridenoure、Jason Wallace、Lauren Rogers、Austin Baker、Nathan Gapp、Dennis Poulos、Debbie Willhart、Ellen Cody、Elizabeth Loving、Kelly Dollarhide 和 Klay Bendle 的大力支持,虚拟研讨会不可能成功举办。我们还要感谢 David Martin、Ben Felter、Johanna Spangenberg Jones 和 Ric Mommer 的点睛之笔。
系统性硬化症 (硬皮病;SSc) 是一种病因不明的免疫介导疾病,其特征是皮肤和内脏器官(尤其是肺、胃肠道和心脏)的血管病变和纤维化 ( 1 )。尽管付出了所有努力,但目前尚无治愈性疗法,SSc 仍然是一种严重的疾病,可导致残疾,其发病率和死亡率与纤维化的程度直接相关 ( 1 )。由于免疫失调被认为在 SSc 的发病机制中起着重要作用,因此基于免疫抑制药物(如霉酚酸酯)的治疗方案仍然是主要的治疗选择,尤其是对于伴有严重肺部疾病的 SSc ( 2 )。自身抗体(其中一些具有潜在致病性 ( 3 ))是 SSc 的标志,再加上 SSc 患者皮肤活检中的滤液中的 B 细胞,表明适应性免疫参与了该疾病的发病机制,并促进了利妥昔单抗 (RTX) 等 B 细胞耗竭药物的治疗应用。利妥昔单抗是一种抗 B 细胞抗原 CD20,但其在结缔组织疾病中的作用机制仍不清楚,可能不只是 B 细胞的耗竭。关于其在 SSc 中的疗效,报告的数据相互矛盾 ( 4 )。在最近的系统评价和荟萃分析中,Goswami 及其同事表明,RTX 作为 SSc 间质性肺病的治疗方法,在治疗的第一年改善了 FVC 和 DLco ( 5 )。另外两篇系统评价和荟萃分析 ( 6 , 7 ) 以及一项纳入了 254 名 SSc 患者的观察性研究 ( 8 ) 表明皮肤评分改善、器官受累稳定。尽管观察到了这些可能的有益作用,但尚未记录到长期效果。RTX 疗效的一个潜在缺点可能来自于以下事实:这种药物在 B 细胞耗竭方面确实有效,但浆细胞和造血干细胞不在其靶点之列。长寿浆细胞被认为是 SSc 发病机制中的重要参与者,因为它们与 CD20+ B 细胞一起渗入 SSc 患者的皮肤,并且是 SSc 自身抗体的主要来源,这些自身抗体也可能发挥功能性作用 ( 9 )。
联系方式 1. Lin MJ、Svensson-Arvelund J、Lubitz GS、Marabelle A、Melero I、Brown BD、Brody JD。(2022 年)。癌症疫苗:下一个免疫治疗前沿。自然癌症 3:911-926。 2. Muller AJ、Thomas S、Prendergast GC。(2023 年)。癌症疫苗简要概述。癌症杂志。29:34-37。 3. Marabelle A、Kohrt H、Caux C、Levy R。(2014 年)肿瘤内免疫:癌症治疗的新范式。临床癌症研究。20:1747-1756。 4. Melero I、Castanon E、Alvarez M、Champiat S、Marabelle A。(2021 年)。癌症免疫疗法的肿瘤内给药和肿瘤组织靶向。 Nat Rev Clin Oncol. 18: 558 576。5. Sharma P、Siddiqui BA、Anandhan S、Yadav SS、Subudhi SK、Gao J、Goswami S、Allison JP。(2021 年)。免疫检查点疗法的下一个十年。Cancer Discov。11: 838-857。6. Velez A、DeMaio A、Sterman D。(2023 年)。非小细胞肺癌的冷冻消融和免疫:冷冻免疫疗法的新时代。Front Immuno。14: 1203539ff。7. Annen R、Kato S、Demura S、Miwa S、Yokka A、Shinmura K、Yokogawa N、Yonezawa N、Kobayashi M、Kurokawa Y、Gabata T、Tshuchiya H。(2022 年)。小鼠模型中局部冷冻消融治疗转移性骨肿瘤后的肿瘤特异性免疫增强作用。Int J Mol Sci 23: 9445ff。8. Smith C, Chang MY, Parker RH, Beury DW, DuHadaway JB, Flick HE, Boulden J, Sutanto-Ward E, Soler AP, Laury-Kleintop LD, Mandik-Nayak L, Metz R, Ostrand-Rosenberg S, Prendergast GC, Muller AJ。(2012)。IDO 是肺癌和转移发展的淋巴结致病驱动因素。Cancer Discov 2: 722-735。