该工作组包括一名 NANDS 理事会成员、精通临床试验执行和网络协调的研究人员、精通网络所涉及研究领域的研究人员,以及来自行业和患者组织的代表。 Barbara Vickrey(联合主席),医学博士、公共卫生硕士,西奈山伊坎医学院 Richard Rudick(联合主席),医学博士,Optimal Brain Health Consultants Ed Trevathan,医学博士、公共卫生硕士,范德堡大学 Erika Augustine,医学博士、理学硕士,肯尼迪克里格研究所 Rebecca Gottesman,医学博士、哲学博士,NINDS 院内研究部 Bernard Ravina,医学博士,Praxis Precision Medicines Janet Hieshetter,肌张力障碍医学研究基金会 Traci Clemons,哲学博士,The Emmes Company,LLC Issam Awad,医学博士,芝加哥大学 Adrian Hernandez,医学博士,杜克大学医学院 E. Ray Dorsey,医学博士、工商管理硕士,罗彻斯特大学 评估流程和时间表
量子信息可以通过离散系统(例如旋转或连续系统)作为高斯州携带。离散情况下的量子代码通过一般的“稳定器”框架很好地研究了。从离散的耐偏移代码开始,Gottesman,Kitaev和Preskill为连续变量描述的系统构建了量子代码[2]。代码单词是无限挤压状态的叠加,这是正交平面中δ函数的2D网格。实际上,人们与有限的挤压合作。代码,| GKP⟩状态是通过宽度宽度函数宽度Δ -1的高斯函数的高斯函数的叠加来描述的。这是正交平面中的平方代码。还有其他类型的网格状态,例如六角形代码。量子误差校正(QEC)对于网格状态至关重要。最近,耶鲁大学的研究人员提出了QEC方案,并为网格状态进行了实验[1]。在这篇评论中,我将讨论| GKP⟩状态,其分布,网格状态的QEC协议以及人们最近的实验。
1 加州大学伯克利分校分子与细胞生物学系,美国伯克利;2 加州大学伯克利分校创新基因组学研究所,美国伯克利;3 帕金森病科学联合研究网络 (ASAP),美国切维蔡斯;4 阿尔伯特爱因斯坦医学院 Dominick P. Purpura 神经科学系,美国布朗克斯;5 加州大学旧金山分校海伦迪勒家庭综合癌症中心,美国旧金山;6 加州大学旧金山分校泌尿外科系,美国旧金山;7 Arc 研究所,美国帕洛阿尔托;8 陈扎克伯格生物中心,美国旧金山;9 加州大学伯克利分校海伦威尔斯神经科学研究所,美国伯克利;10 阿尔伯特爱因斯坦医学院遗传学系,美国布朗克斯; 11 美国布朗克斯区阿尔伯特爱因斯坦医学院露丝·L·和戴维·S·戈特斯曼干细胞与再生医学研究所
Clifferd 群是由 Hadamard 门、cnot 门和 Phase 门生成的酉群的有限子群。该群在量子纠错、随机基准测试协议和纠缠研究中起着重要作用。这里,我们考虑寻找实现给定 Clifferd 群元素的短量子电路的问题。我们的方法旨在最小化假设全到全量子比特连接的纠缠门数。首先,我们考虑基于模板匹配的电路优化,并设计 Clifferd 特定的模板,利用分解 Pauli 门和交换门的能力。其次,我们引入一种符号窥孔优化方法。它的工作原理是将整个电路投影到一小部分量子比特上,然后通过动态规划以最佳方式重新编译投影的子电路。将选定的量子比特子集与剩余量子比特耦合的 cnot 门用符号 Pauli 门表示。通过软件实现这些方法,可以找到距离 6 量子比特最优仅 0.2% 的电路;与 Aaronson–Gottesman 标准形式相比,最多 64 量子比特的电路中的两量子比特门数量平均减少了 64.7% [ 3 ]。
Gottesman and Chuang(1999)引入的量子组合的传送模型激发了Clif-Ford层次结构的发展。尽管具有量子计算的内在价值,但与该模型密切相关的魔术状态蒸馏的广泛使用强调了理解层次结构的重要性。除了诊断单位的情况外,人们对该等级结构的结构有限有限(Cui等,2017; Rengaswamy等人。2019)。我们通过Weyl(即Pauli)在这些级别上扩展了层次结构的第二和第三层的结构,第一个级别是无处不在的Pauli组。尤其是我们对Pauli Group上标准的操作的支持。自从第三级统一的保利会产生Trace-Lise Hermitian Cli效应以来,我们也表征了他们的Pauli支持。半单位单位在电视模型中节省了Ancilla,我们通过同骨转移探索他们的Pauli支持。最后,我们证明,直到通过clif-ford乘法,每个第三级统一通勤至少都使用一个Pauli矩阵。这可以无力地使用,以表明,直到通过cli的繁殖,每个第三级统一都在保利组的最大交换亚组上进行。另外,可以看出,后者意味着Beigi和Shor(2010)证明的广义半乳房构想。我们讨论了量子误差校正和高空产品设计中的潜在应用。
执行团队 Zack Dvey-Aharon,博士,首席执行官,联合创始人 连续创业者、顾问和讲师 机器学习博士,8200 名校友 Danny Margalit,首席运营官,联合创始人 Aladdin 联合创始人(纳斯达克 IPO) 产品、专利和知识产权专家 Izik Itzhakov,业务发展副总裁 在 CLEW 和 iMDsoft 从事医疗保健 IT 工作超过 20 年,8200 名校友 Amit Wohl,产品副总裁 经验丰富的技术主管 理学硕士、麻省理工学院工商管理硕士、理学学士 以色列理工学院 董事会成员 Yiannis Monovoukas,博士Helios Global Investments、Falcon Ventures TEI Biosciences 首席执行官,以 3.12 亿美元收购 Sean Ianchulev,医学博士,公共卫生硕士 连续投资者,Eyenovia 首席执行官 加州大学旧金山分校和西奈山眼科学教授 Steve Remondi 连续投资者,Xsphera 首席执行官,塔夫茨大学顾问委员会成员,R-Cubed 合伙人 Mike Netz 连续天使投资者 前首席执行官 Teva Israel 医疗顾问委员会 • Sean Ianchulev,医学博士,公共卫生硕士,眼科医生 • Austin Bach,DO,公共卫生硕士,眼科医生 • Edward Rubinchik,医学博士,眼科医生 • Sam Goldberger,医学博士,工商管理硕士,眼科医生 • Elaine Sachter,医学博士,内科 • Eli Kraus,医学博士,眼科医生 • Ehud Rechtman,医学博士,眼科医生 • Tzvi Gottesman,OD,验光师 财务 • 迄今已筹集 300 万美元 • 位于波士顿和纽约的投资集团 •美国和伊利诺伊州天使 • 80 万美元 BIRD 资助获得者
望远镜系统的角分辨率受限于相干孔径的大小,孔径越大,角分辨率越精细。这可以通过制造更大的望远镜来实现,或者通过组合多个望远镜阵列来模拟更大的望远镜。后者允许用户在探测器之间创建非常长的基线,而无需使用单个的大型探测系统;使用甚长基线干涉测量法 (VLBI) 的望远镜系统已经能够获得更高质量的天文物体图像。然而,直接探测 VLBI 对于较高频率的光子(例如可见光子)来说更加困难,因为这些波长在光纤中的传输损耗较大,并且无法直接记录光频率的电场(与射电望远镜相比,射电望远镜的信号可以先以电子方式记录,然后像事件视界望远镜 [ 1 ] 一样进行“干涉”)。 Gottesman、Jennewein 和 Croke 提出通过检测望远镜之间的相关性来规避这一限制,每个望远镜都由一个天文光子和一个地面光子的叠加组成(望远镜之间的相对相位可控)[2]。本质上,这两个过程之间存在量子力学的双光子干涉,其中天文光子进入一个望远镜,地面光子进入另一个望远镜,反之亦然。干涉可见度作为望远镜基线分离的函数的变化决定了两个望远镜处光源的相互相干性,进而通过范西特-泽尔尼克定理,人们可以确定光源的强度分布[3]。在这里,我们使用来自自发参量下转换(SPDC)的光子进行了原理验证演示。
量子公钥加密由 Gottesman [ 11 ] 和 Kawachi 等人 [ 14 ] 提出,作为标准公钥加密概念的推广,允许公钥成为量子态。更具体地说,此原语允许 Alice 在本地生成状态 | pk ⟩ 的(多份)副本并将其上传到某个证书颁发机构。稍后,Bob 可以查询证书颁发机构以获取 | pk ⟩ 的副本并使用它来向 Alice 发送私人消息。与经典设置类似,量子 PKE 假设证书颁发机构向 Bob 提供了正确的信息(在本例中为状态 | pk ⟩ ),但不对证书颁发机构的行为做任何假设,证书颁发机构可以尝试以任意方式获取 Alice 的密钥。然而,与经典情况相反,由于量子态通常无法复制,如果 Alice 想要与多方建立安全通道,就必须假设她上传了 | pk ⟩ 的多份副本。尽管存在这一局限性,量子 PKE 仍然是一个有趣的研究对象:(i)由于使用了量子信息,量子 PKE 可能只需要比标准(经典)PKE 更弱的计算假设即可实现,甚至可以无条件实现。(ii)与需要更多交互的量子密钥分发 (QKD) 协议 [ 2 ] 相比,量子 PKE 保留了经典 PKE 的交互模式,从而可以实现轮次最优安全通信。然而,量子 PKE 的现状留下了许多关于构建此原语所需最小假设的问题。现有提案 [ 14 ] 依赖于临时假设,这些假设对于经典 PKE 来说似乎不够,但没有给出此原语的清晰复杂性理论表征。甚至还有关于无条件安全的量子 PKE [ 11 ] 的提案,尽管没有安全性证明。我们注意到,推测量子 PKE 的无条件安全性至少是合理的——毕竟,QKD 确实实现了信息论安全性(假设经过认证的通道)。
P1。 Bernadette Tiberi HDAC7对于造血干和祖细胞功能Thomas Jefferson University P2是必需的。 greta zara lps介导的严重炎症重定向骨髓造血干细胞循环和分化命运,通过在希望城市贝克曼研究所P3上重塑其染色质结构。 Brandon T. Tran的骨髓细胞和祖细胞的表观遗传分析鉴定了细胞类型和基因靶标在HSPC训练有素的免疫中至关重要。 贝勒医学院P4。 wantong li解码转录因子依赖性增强子基因调节网络定义造血生态位功能。 俄亥俄州立大学P5。 RNA甲基化景观的单细胞和高分辨率映射 lla甲基化景观的高分辨率图显示了不列颠哥伦比亚省P6的造血干/祖细胞标识大学的表转录特征。 Monica kasbekar正常和美质前的人类HSC表现出对IL-1β哥伦比亚干细胞启动P7的年龄依赖性反应。 Xuan Zhang人类造血祖细胞的多模式地图:对辛辛那提儿童医院医疗中心P8的健康,衰老和疾病的见解。 詹姆斯·斯旺(James Swann)缺乏TET2的造血干和祖细胞中的表观遗传扰动会导致紧急骨髓骨髓疾病哥伦比亚大学P9。 Tanner C. Martinez Cux1通过调节芝加哥大学医学综合癌症中心P10来控制HSC命运。 Mona Vogel葡萄糖保留通过补体成分C3的细胞内水平调节HSC功能。P1。Bernadette Tiberi HDAC7对于造血干和祖细胞功能Thomas Jefferson University P2是必需的。greta zara lps介导的严重炎症重定向骨髓造血干细胞循环和分化命运,通过在希望城市贝克曼研究所P3上重塑其染色质结构。Brandon T. Tran的骨髓细胞和祖细胞的表观遗传分析鉴定了细胞类型和基因靶标在HSPC训练有素的免疫中至关重要。贝勒医学院P4。wantong li解码转录因子依赖性增强子基因调节网络定义造血生态位功能。俄亥俄州立大学P5。RNA甲基化景观的单细胞和高分辨率映射 lla甲基化景观的高分辨率图显示了不列颠哥伦比亚省P6的造血干/祖细胞标识大学的表转录特征。 Monica kasbekar正常和美质前的人类HSC表现出对IL-1β哥伦比亚干细胞启动P7的年龄依赖性反应。 Xuan Zhang人类造血祖细胞的多模式地图:对辛辛那提儿童医院医疗中心P8的健康,衰老和疾病的见解。 詹姆斯·斯旺(James Swann)缺乏TET2的造血干和祖细胞中的表观遗传扰动会导致紧急骨髓骨髓疾病哥伦比亚大学P9。 Tanner C. Martinez Cux1通过调节芝加哥大学医学综合癌症中心P10来控制HSC命运。 Mona Vogel葡萄糖保留通过补体成分C3的细胞内水平调节HSC功能。lla甲基化景观的高分辨率图显示了不列颠哥伦比亚省P6的造血干/祖细胞标识大学的表转录特征。Monica kasbekar正常和美质前的人类HSC表现出对IL-1β哥伦比亚干细胞启动P7的年龄依赖性反应。Xuan Zhang人类造血祖细胞的多模式地图:对辛辛那提儿童医院医疗中心P8的健康,衰老和疾病的见解。詹姆斯·斯旺(James Swann)缺乏TET2的造血干和祖细胞中的表观遗传扰动会导致紧急骨髓骨髓疾病哥伦比亚大学P9。Tanner C. Martinez Cux1通过调节芝加哥大学医学综合癌症中心P10来控制HSC命运。Mona Vogel葡萄糖保留通过补体成分C3的细胞内水平调节HSC功能。shorichiro takeishi造血干细胞数不完全由利基可用性阿尔伯特·爱因斯坦医学院和露丝·L·露丝·戈特斯曼(Ruth L.)和大卫·戈特斯曼(David S.分子医学研究所ULM大学和辛辛那提儿童医学中心
Jean Shin 1,2 , Shaojie Ma 3,4 , Edith Hofer 5,6 , Yash Patel 2 , Daniel E. Vosberg 2 , Steven Tilley 2 , Gennady V. Roshchupkin 7,8,9 , André MM Sousa 10 , 雪球健 11 , Rebecca Gottesman 12 , Thomas H. Mosley 13 , Myriam Fornage 11 、 Yasaman Saba 14 、 Lukas Pirpamer 5 、 Reinhold Schmidt 5 、 Helena Schmidt 14 、 Amaia Carrion-Castillo 15 、 Fabrice Crivello 16 、 Bernard Mazoyer 16 、 Joshua C. Bis 17 、 Shuo Li 18 、 琼阳 18 、米歇尔·卢西亚诺 19,20 , Sherif Karama 21 , Lindsay Lewis 21 , Mark E. Bastin 19,22 , Mathew A. Harris 22,23 , Joanna M. Wardlaw 19,24 , Ian E. Deary 19,20 , Markus Scholz 25,26 , Markus Loeffler 25,26 , A. Veronica Witte 27,28,29 , Frauke Beyer 27,28 , Arno Villringer 27,28,29 , Nicola J. Armstrong 30 , Karen A. Mather 31,32 , David Ames 33,34 , Jiyang Jiang 31 , John B. Kwok 35,36 , Peter R. Schofield 32,36 , Anbupalam Thalamuthu 31 , Julian N. Trollor 31,37、玛格丽特·J·赖特 38,39、亨利·布罗达蒂 31,40、魏文 31、Perminder S. Sachdev 31,41、Natalie Terzikhan 9、Tavia E. Evans 7,9、Hieab HHH Adams 7,9、M. Arfan Ikram 7,9,42、Stefan Frenzel 43、Sandra van der Auwera-Palitschka 43,44、Katharina Wittfeld 43,44、Robin Bülow 45、Hans Jörgen Grabe 43,44、Christophe Tzourio 46,47、Aniket Mishra 46、Sophie Maingault 48、Stephanie Debette 46,47,49、内森·吉莱斯皮50、Carol E. Franz 51,52、William S. Kremen 51,52,53、Linda Ding 54、Neda Jahanshad 54、ENIGMA 联盟、Nenad Sestan 3,4、Zdenka Pausova 1,58,59、Sudha Seshadri 49,55、Tomas Paus 2,56,57以及 NeuroCHARGE 工作组