对消费者清洁能源的需求一直很高; 2020年追求零目标的公司数量增加了三倍。随着更多可再生电厂的建造,无碳能源的可用性变得更加动荡,包括Google,Microsoft和美国联邦政府在内的组织宣布了项目或致力于采购24/7清洁能源。但是,目前尚无公认的系统,可以每小时验证可再生电力供应。EnergyTag正在领导一个由100多个支持组织组成的联盟,包括世界上最大的公用事业,公司消费者,电网运营商,政府机构,非政府机构和起始人,以开发一种机制,以使用时间和生产来源来“标记”电力,以便消费者可以乘每小时与清洁能源相匹配。具体来说,《能量标签》计划正在寻求定义一个为能量属性证书(EACS)添加时间戳的框架,这将使它们更反映清洁能源的物理可用性。参与者认为,这可能会改善公众对清洁能源索赔的看法,并激励能源存储并支持新的碳会计方法。
一方面,塑料回收可生产出高质量的二次原料,从而节约自然资源。另一方面,通过使用回收材料,可以大大减少破坏气候的温室气体排放和自然初级资源的使用。MCAM Symalit、Appenzell Branch、Recycling Solutions 的塑料回收可以成为新材料的一种具有商业吸引力的替代品。高质量的产品是根据统一的质量标准制备的。
○ 带有(亚)小时时间戳的生产期,○ 生产期长度,○ GO 的面值(Wh/MWh),○ 生产地点,○ 生产的投标区域(可选),○ 受益人的身份及其位置。●(可选:准备接受来自其他国家 2 的 Granular GO)。● 账户持有者/利益相关者自动访问 GO 注册表中账户上的 Granular GO(例如,这可以通过 API 来实现)。
目的和动机:本期特刊旨在提供一套全面的方法、模型和系统,这些方法、模型和系统都属于粒计算的共同范畴,旨在为机器学习方法和应用提供可解释性。可解释人工智能 (XAI) 将允许领域专家验证黑盒 AI 算法或过程提供的结果,以让他们参与决策过程。为此,XAI 方法应该提供对 AI 模型结果背后原因的清晰理解。在这方面,XAI 方法可以采用信息粒化方法,以分层和/或语义方式聚合数据实例,以提供聚合的、人类可理解的解释;以语义组织的方式表示数据实例(例如通过聚类)以查找类原型或反事实;采用符号或神经符号建模来隔离由特定符号激活的神经网络部分(例如,手写符号可以识别为笔画组);并获得语义相关的信息颗粒(例如通过表示学习)作为构建解释的概念。此外,一些人工智能方法构建了可通过设计解释的模型,即不需要任何额外的程序来解释其内部模型,因为它们不是黑匣子。当前研究的主要不足之一是了解可通过设计解释的模型在准确性方面是否与需要通过多种方式解释的黑匣子模型兼容。
超导量子信息处理机主要基于微波电路,该电路具有相对较低的特性阻抗(约 100 Ω)和非谐性小的特点,这会限制它们的相干性和逻辑门保真度 1、2。一种有前途的替代方案是基于所谓的超电感器的电路 3 – 6,其特性阻抗超过电阻量子 RQ = 6.4 k Ω。然而,以前实现的超电感器由介观约瑟夫森结阵列 7、8 组成,会在量子比特附近引入非预期的非线性或寄生谐振模式,从而降低其相干性。在这里,我们提出了一种基于颗粒铝超电感器条带的通量量子比特设计 9 – 11。我们表明,颗粒铝可以形成具有高动态电感的有效结阵列,并可与标准铝电路加工原位集成。测得的量子比特相干时间 T ** ss 30 2 ≤ μ 说明了颗粒铝在从受保护的量子比特设计到量子限制放大器和探测器等各种应用领域的潜力。使用超导电路 1 构建大规模量子信息处理机器仍然是一项具有挑战性的物理和工程工作。尽管目前已经有了有前途的小规模原型 12 – 14 和必要构建块的原理验证演示,但要扩展到大量逻辑量子比特,需要在量子比特技术的各个方面取得突破,包括量子比特架构和材料。例如,当前超导量子比特处理器面临的主要挑战之一是量子态泄漏到非计算自由度 2 的问题,这可能成为扩展的障碍。 transmon 量子比特的有限非谐性可能不足以在频率上将计算空间与周围日益复杂的微波环境隔离。一种有前途的替代量子比特架构基于所谓的超电感器,其特性阻抗大于 RQ = h /(2 e ) 2 = 6.4 k Ω,例如 fluxonium 量子比特 3 ,它提供数量级更大非谐性和与 transmon 量子比特 4 相当的相干性。在这些电路中,相位的量子涨落比电荷涨落更占主导地位,并为设计新的、可能受到保护的量子电路 15、16 提供了场所。大电感器也可能成为下一代通量和相位量子比特 17 的基石。此外,采用超电感器和小电容器的微波谐振器最近已被用来增强和限制电压波动,从而实现光子和电子之间的强耦合
Spectrum SCG-C粒状活性炭第1部分:识别物质/混合物的识别和公司承诺1.1产品标识符的公司:SCG-C产品代码:活性炭1.2相关的物质或混合物的相关用途,并使用:在工业,专业和消费者环境中用作吸附的物质或混合物。使用描述符系统(覆盖范围):SU3:Proc 1,2,2,3,4,5,8a,8a,9,9,9,14,15,22 SU22:Proc 1,2,2,2,3,4,5,5,8a,8a,8a,8b,9,15 Su21:PC 2,3,3,3,29,29,29,35,35,37,37,391.3安全数据表供应商的详细信息:品牌名称:Spectrum(公司编号01595206)20/20商业园女梅德斯通肯特ME16 0LS英国T:+44(0)1622 691886 F:+44(0)1622 621932 1.4紧急联系人Suzanne Warren Warren T:+44()7970 633392第2节2:Hazards 2.1。根据EC法规编号将物质或混合物分类1272/2008及其修正案。该物质不会出现身体上的危害。请参阅有关网站上其他产品的建议。该物质不存在健康危害。该物质不存在环境危害。在标准使用条件下没有已知或可预见的环境损害。符合指令67/548/EEC,1999/45/EC及其修正案。该物质不会出现身体上的危害。请参阅有关网站上其他产品的建议。该物质不存在健康危害。该物质不存在环境危害。在标准使用条件下没有已知或可预见的环境损害。2.2标签元素符合EC法规1272/2008及其修正案。对此物质没有标签要求。符合指令67/548/EEC,1999/45/EC及其修正案。安全短语:S 22不要呼吸灰尘。2.3其他危害可能会导致CO和CO2发射,如果发生火灾。根据《 ECHA化学安全评估指南》,第R11章,R11.1.2.1节:“附件XIII的PBT和VPVB标准不适用于无机物质”。作为活性碳-HDS类型被视为无机物质,PBT评估不适用。湿活化的碳从空气中耗尽氧气,因此可能会遇到危险的低氧气。每当工人进入含有活性碳的容器时,应确定氧气含量,并应遵循潜在的低氧区域的工作程序。
控制土壤酸度对于从农作物中获得最佳产量至关重要,因为过多的酸度会影响必需植物营养素的可用性,从而对农作物的生产率产生不利影响。石灰被用来抵消土壤酸度,但通常不建议同时应用石灰和有益的微生物。农民必须等待两到三周的时间,然后再将其他有益的微生物纳入土壤。Trichoderma是一种真菌生物防治剂,已被证明有效抑制了几种土壤传播的植物病原体,并在作物生产中是成功的生物农药和生物含量。认识到trichoderma的潜力以及传统的石灰应用所带来的挑战,ICAR-IISR的科学家开发了“ Tricholime”,以整合石灰和trichoderma。
网络安全仍然是我们数字时代最重要的挑战之一。创建安全的生态系统需要采用整体安全方法,其中包括零信任的心态,云端姿势以及对人和技能的投资。零信托遵循明确验证的原则,使用最小特权访问并假设违反。根据这些原则运作的组织更有弹性,一致和对新攻击的反应。与我们的合作伙伴一起,我们正在采取与这些原则保持一致的步骤,以保护渠道。
摘要本研究研究了粒状材料(例如沙子,砾石和工业粉末)范围内的分级熵和统计熵的概念。它提出了一种新型方法,该方法利用了自动非线性模型拟合,并使用参数误差估计和插值来分析粒度分布及其在这些材料中的固有随机性。这种方法的核心在于其在不同条件下预测颗粒材料的行为和特性的能力,这对于土木工程和材料科学等领域的进步至关重要。分级和统计熵理论的整合,以及复杂的非线性模型拟合和插值技术,构成了对颗粒材料进行全面分析的坚实基础。这可以更好地了解其复杂行为,从而增强了它们在科学和工程应用中的实际使用。采用这些先进的方法,表示预测的精度和数据利用效率在颗粒材料分析中的效率取得了重大进步。它突出了
在连续流动反应器中使用有氧颗粒物生物量的抽象家庭废水处理通常被认为比使用SBR时的性能差。因此,有必要改善反应堆设计的操作模式和操作模式。这项研究的目的是检查过度充气对颗粒有氧形成的影响及其在用人工底物处理废水方面的性能。Reaserach carried out with providing intermitten aeration variation (3 liters/minute; 2,55 cm/s) in periods of 2, 3, and 4 hours (HRT 6 hours; OLR 2.5 kg COD/m 3 .day; CH 3 COONa as a carbon source) in an Airlift reactor with continuous flow system (H/D 12.5 outside and 20 internal parts).在4小时内给出间断的曝气变化后,有氧颗粒状的形成更好,生物质相对稳定和紧凑。有氧颗粒状特性为85-88 mL/g; 32.95 cm/min; SVI值的1.87毫米和0.67分别为杂种,直径和纵横比。从变异中获得的有机,铵和硝酸盐的去除效率在另外两个变化中最高,为58.35%; 26.56%;有机,铵和硝酸盐的25.75%。测试了用于评估微生物性能的动力学模型是单体,孔托瓦模型,GRAU二阶和Stover-kincannon动力学模型。二阶Grau动力学模型更适合于追踪生物量在间隔曝气变化中使用的底物,关键字:空运反应堆,有氧颗粒状生物量,间歇性曝气