3D对应关系,即一对3D点,是计算机视觉中的一个有趣概念。配备兼容性边缘时,一组3D相互作用形成对应图。此图是几个最新的3D点云注册方法中的关键集合,例如,基于最大集团(MAC)的一个。但是,其特性尚未得到很好的理解。因此,我们提出了第一项研究,该研究将图形信号处理引入了对应图图的域。我们在对应图上利用了广义度信号,并追求保留此信号的高频组件的采样策略。为了解决确定性抽样中耗时的奇异价值分解,我们采取了随机近似采样策略。因此,我们方法的核心是对应图的随机光谱采样。作为应用程序,我们构建了一种称为FastMAC的完整的3D注册算法,该算法达到了实时速度,而导致性能几乎没有下降。通过广泛的实验,我们验证了FastMac是否适用于室内和室外基准。例如,FastMac可以在保持高recistra-
摘要 - 为了充分利用移动操纵机器人的功能,必须在大型未探索的环境中自主执行的长途任务。虽然大型语言模型(LLMS)已显示出关于任意任务的紧急推理技能,但现有的工作主要集中在探索的环境上,通常集中于孤立的导航或操纵任务。在这项工作中,我们提出了MOMA-LLM,这是一种新颖的方法,该方法将语言模型基于从开放式摄影场景图中得出的结构化表示形式,随着环境的探索而动态更新。我们将这些表示与以对象为中心的动作空间紧密地交织在一起。重要的是,我们证明了MOMA-LLM在大型现实室内环境中新型语义交互式搜索任务中的有效性。最终的方法是零拍摄,开放式摄影库,并且可以易于扩展到一系列移动操作和家用机器人任务。通过模拟和现实世界中的广泛实验,与传统的基线和最新方法相比,我们证明了搜索效率的显着提高。我们在http://moma-llm.cs.uni-freiburg.de上公开提供代码。
深度学习技术的最新进展为协助病理学家从全切片病理图像(WSI)中预测患者的生存期带来了可能性。然而,大多数流行的方法仅适用于WSI中特定或随机选择的肿瘤区域中的采样斑块,这对于捕捉肿瘤与其周围微环境成分之间复杂相互作用的能力非常有限。事实上,肿瘤在异质性肿瘤微环境(TME)中得到支持和培育,详细分析TME及其与肿瘤的相关性对于深入分析癌症发展的机制具有重要意义。在本文中,我们考虑了肿瘤与其两个主要TME成分(即淋巴细胞和基质纤维化)之间的空间相互作用,并提出了一种用于人类癌症预后预测的肿瘤微环境相互作用引导图学习(TMEGL)算法。具体来说,我们首先选择不同类型的块作为节点来为每个 WSI 构建图。然后,提出了一种新颖的 TME 邻域组织引导图嵌入算法来学习可以保留其拓扑结构信息的节点表示。最后,应用门控图注意网络来捕获肿瘤与不同 TME 组件之间与生存相关的交集以进行临床结果预测。我们在来自癌症基因组图谱 (TCGA) 的三个癌症队列上测试了 TMEGL,实验结果表明 TMEGL 不仅优于现有的基于 WSI 的生存分析模型,而且对生存预测具有良好的可解释能力。
● 随着区块链交易数量的增长,所需的存储空间和网络带宽也随之增长。● 迄今为止,DAG 项目包含一些中心化特性,例如中央协调器、预选验证器或“见证”节点,或完全私有的网络系统。迄今为止,它们还无法维持“纯粹的去中心化”。
摘要 — 本文提出了一种基于电网内现行功率流条件的节点聚类新方法。为此,首先,将网络的有功功率流状态建模为有向无环图。该有向图明确表示功率流向何处,这有助于监控和分析系统漏洞。有向无环图表示还可以轻松识别仅提供或吸收有功功率的总线:这些总线分别是纯源节点和纯汇节点。对系统中的每个节点应用迭代路径查找程序,以枚举供电的源节点和其将功率转发到的下游汇节点。然后应用新颖的聚类算法将共享同一组可达源节点和汇节点的节点分组在一起。首先提出这种新颖的聚类方法作为一种工具,通过更好地总结大型电网中的总功率流配置来提高控制室操作员的态势感知能力。所提出的方法应用于两个样本电网,并阐述了与河流系统的类比,将支流、分流和中央主流等概念应用于电网。
这项研究介绍了用于Covid-19检测的生物传感器的设计和分析,将石墨烯元面积与金,银和GST材料整合在一起。所提出的传感器架构将平方环谐振器与圆环谐振器结合在一起,并通过红外制度中的Comsol多物理模拟进行了优化。传感器表现出非凡的性能特征,在初级检测带(4.2-4.6μm)中的吸收值超过99.5%,次级带(5.0-5.5μm)中的吸收值约为97.5%。该设备表现出高灵敏度(4000 nm/riU),检测极限为0.078,优点为16.000riu⁻时,当利用晶体GST作为底物材料时。通过使用XGBoost回归的机器学习优化,传感器的性能得到了进一步提高,从而在各种操作参数之间实现了预测和实验值之间的完美相关性(R²= 100%)。双波段检测机制,结合了高级材料和机器学习优化的整合,为快速,无标签和高度敏感的COVID-19检测提供了有前途的平台。这项研究有助于开发用于病毒检测和疾病诊断的下一代生物传感技术。
安全加强学习(SRL)旨在优化最大程度地提高长期奖励的控制政策,同时遵守安全限制。SRL具有许多现实世界的应用,例如自动驾驶汽车,工业机器人技术和医疗保健。离线增强学习(RL)的最新进展 - 代理商在不与环境互动的情况下从静态数据集中学习政策 - 已成为一种有希望的方法来得出安全控制策略。但是,离线RL面临着重大挑战,例如数据中的协变量转移和离群值,这可能导致次优政策。同样,在线SRL通过实时环境互动得出安全的政策,与异常值进行斗争,并且通常依靠不切实际的规律性假设,从而限制了其实用性。本文通过提出一种混合访问线路方法来解决这些挑战。首先,离线学习指南在线探索的先验知识。然后,在在线学习过程中,我们用Student-T的流程(TP)替换流行的高斯流程(GP),以增强协变速器和异常值的鲁棒性。
I. i tratotuction for Graphs(DNNG)代表了一个新兴领域,该领域研究如何将深度学习方法推广到图形结构化数据。由于图是一种功能强大且灵活的工具,可代表模式及其关系形式的复杂信息,从分子到蛋白质到蛋白质相互作用网络,再到社交或运输网络,或者在知识图上,或者在非常不同的范围内建模系统,这些方法已被用于许多应用领域。Since the pioneering works on trees, namely Recursive Neural Networks [1], [2], and directed acyclic graphs [3], [4], up to methods extended to general graphs, both by recursive approaches (namely Graph Neural Networks (GNNs) [5], [6]), or Graph Convolutional Network approaches (namely NN4Gs [7], GCNs, etc.),已经提出了许多用于图的神经模型[8],[9]。此外,除了纯神经网络范式之外,已经引入了术语深图网络(DGN),还包括基于贝叶斯的和生成的图形网络[9]。特别是在2015年之后,已经引入了更广泛的模型,并且在其各种化身中,DNNG和DGNS已成为图形表示在学习任务中的显着能力(例如节点分类,图形分类,图形分类,图形,图形和链接预测)的强烈研究的话题。目睹了对该领域的兴趣,已经出现了许多调查,例如[8],[9]和调查文件[8]获得了2024 IEEE TNNLS杰出纸质奖。但是,这一研究和应用领域仍然具有很高的活力且不断增长[10]。的确,DNNG和相关领域的越来越多的作品表明,学术和工业社区对开发更先进的技术和算法的需求仍然相当大,请考虑包含可信赖的