此类陈述包括:矿化,等级或回收率的可能变化;当前勘探活动的实际结果;开垦活动的实际结果;未来经济评估的结论;随着计划继续完善的项目参数的变化;设备或流程无法按预期运行;采矿业的事故和其他风险;与建筑活动和运营有关的延误和其他风险;时间和收到监管部门的运营批准;公司和其他相关方满足监管要求的能力;根据合理条款的拟议交易,计划和营运资金要求提供融资;第三方服务提供商能够及时和及时提供服务的能力;市场状况和一般业务,经济,竞争,政治和社会状况。
摘要 - 在动态图上检测到的动态检测旨在与图表中观察到的标准模式及其时间信息相比,识别表现出异常行为的实体。由于其在财务,网络安全和社交网络等各个领域的应用,它引起了越来越多的关注。但是,现有方法面临两个重大挑战:(1)动态结构捕获挑战:如何有效地使用复杂的时间信息捕获图形结构,以及(2)负面采样挑战:如何为无人看管的学习构建高质量的负样本。为了应对这些挑战,我们提出了对动态图(Gady)的生成异常检测。gady是一个连续的动态图模型,可以捕获细粒的时间信息以应对动态结构捕获挑战,从而克服了现有离散方法的局限性。指定,我们建议使用优先级的时间聚集和状态特征来增强动态图编码器以进行异常检测。在第二个挑战中,我们引入了生成对抗网络的新颖使用来产生负面子图。此外,在发电机训练目标中引入了辅助损失功能,以确保同时生成的样品的多样性和质量。广泛的实验表明,我们提出的Gady在三个现实世界数据集上的表现明显优于现状方法。补充实验进一步验证了我们的模型设计的有效性和每个组件的必要性。
摘要:在这项工作中,开发了用于水中的GD 3+离子检测的电解石墨烯场效应晶体管。通过在聚酰亚胺的光载体上制造了晶体管的源和排水电极,而石墨烯通道则是通过用喷墨打印氧化石墨烯墨水墨水来获得的,随后将氧化石墨烯墨水还原以减少氧化石墨烯。GD 3+选择性配体DOTA由炔烃连接器功能化,以通过在金电极上的Chemistry将其移植而不会失去其对GD 3+的影响。全面描述了合成途径,配体,接头和功能化表面的特征是电化学分析和光谱。AS官能化电极用作石墨烯晶体管中的栅极,因此可以调节源量电流作为其电势的函数,该电源本身是由在门表面上捕获的GD 3+浓度调节的。即使在包含其他潜在干扰离子的样品中,获得的传感器也能够量化GD 3+,例如Ni 2+,Ca 2+,Na+和3+。量化范围从1 pm到10 mm,对于三价离子,灵敏度为20 mV dec -1。这为医院或工业废水中的GD 3+定量铺平了道路。
放置是一项至关重要的任务,在VLSI物理设计中具有高计算复合物。现代的分析贴花将放置目标作为非线性优化任务,遭受了长时间的迭代时间。为了加速和增强放置过程,最近的研究转向了基于深度学习的方法,尤其是利用图形卷积网络(GCN)。但是,由于电路放置的复杂性涉及大规模的单元格和特定于设计的图形统计,因此基于学习的位置需要时间和数据消耗的模型培训。本文提出了礼物,这是一种无参数的技术,用于加速位置,植根于图形信号处理。礼物擅长捕获电路图的多分辨率平滑插图,以生成优化的放置解决方案,而无需进行耗时的模型训练,同时显着减少了分析放置器所需的迭代次数。实验结果表明,礼物可显着提高放置效率,同时达到竞争性或卓越的性能与最先进的垫片相符。,与
。但是,裁定设备操作的物理和化学裁定仍未完全揭示。在这项工作中,目的是阐明设备观察到的灵敏度的性质。朝着这个目标,一个物理化学模型,再加上RGO-EGT的实验表征,可以定量地将栅极电极处的生物认知事件与RGO-EGT的电子特性相关联。显示出在栅极电极处发生的生物识别的平衡,以确定RGO通道的表观电荷中性点(CNP)。RGO-EGT实验传递特性的多参数分析表明,识别事件调节CNP电压,过量的载体密度n n和RGO的量子电容。该分析还解释了为什么孔和电子载体迁移率,界面电容,转移曲线的曲率和跨导性对目标浓度不敏感。对生物识别事件晶体管转导的机制的理解是解释RGO-EGT免疫传感器响应的关键,并指导新颖和更敏感的设备的设计。
随着个体通过数字平均值的显着相互作用的显着增加,图中节点的聚类已成为分析大型和复杂网络的一种基础方法。在这项工作中,我们提出了深层的位置模型(DEEPLPM),这是一种端到端的生成聚类方法,将广泛使用的潜在位置模型(LPM)与图形卷积网络(GCN)编码策略相结合。此外,还引入了一种原始估计算法,以通过变异推理和使用随机梯度下降进行图形重建来整合后聚类概率的明确优化。在模拟场景上进行的数值实验突出了DeepLPM自养生的能力,以选择簇数量的较低限制,这表明其聚类能力与最先进的方法相比。最后,DEEPLPM进一步应用于Merovingian Gaul的教会网络和引文网络Cora,以说明探索大型且复杂的现实世界网络的实际兴趣。
图形神经网络(GNNS)学会通过汇总邻居的信息来表示节点。随着GNNS的深度增加,它们的接受场成倍增长,导致高度记忆成本。文献中提出的几件作品旨在解决通过抽样或使用历史嵌入来解决这一缺点。这些方法主要集中在同质图上的单标签节点分类的基准上,其中相邻的节点通常共享相同的标签。但是,这些方法中的大多数都依赖于可能不会在不同的图形或任务上概括的静态启发式方法。我们认为,采样方法应具有自适应,并适应每个图的复杂结构特性。为此,我们引入了葡萄,这是一种自适应抽样方法,该方法学会识别一组对于训练GNN至关重要的节点。葡萄通过优化下游任务目标来训练第二个GNN,以预测节点采样概率。我们评估涉及同质图和异地图的各种淋巴分类基准的葡萄。我们证明了葡萄在准确性和可伸缩性中的有效性,尤其是在多标签异质图中。此外,葡萄的使用数量级比基于历史嵌入的强基线要少。与其他采样方法不同,葡萄的精度也很高,即使样本量较小,因此可以扩展到大量图。我们的实施在线公开可用。1。
研究助理有望协助团队解决基本的研究和工程问题,支持顶级计算机视觉和计算机图形会议(CVPR,ECCV,ICCV,Siggraph)和期刊(TPAMI,IJCV)的出版物。其他责任包括支持研究生或本科生进行技术实施以及参与其他研究活动,例如阅读小组,研讨会组织等。
对于那些需要线性代数介绍的人来说,与本书兼容的观点包含在吉尔·斯特朗(Gil Strang)的“线性代数介绍”中。有关线性代数的更高级主题,我建议罗杰·霍恩(Roger Horn)和查尔斯·约翰逊(Charles Johnson)的“矩阵分析”及其“矩阵分析中的主题”。对于与图形相关的物理系统的处理,我建议Gil Strang的“应用数学概论”,Sydney H. Gould的“特征值问题的变异方法”,以及Levin,Peres和Wilmer撰写的“特征值问题的变异方法”以及“ Markov Chains and Mighting Times”。