这项工作对图状态(GSS)的纠缠和图连接性质进行了全面探索。使用伪图状态(PGSS)中的量子纠缠(PGSS)使用纠缠距离(ED)进行量化,这是一种最近引入的两部分纠缠的度量。此外,还提出了一种新的方法,用于使用Pauli矩阵量子相关器探测真正的GSS的基础图连接性。这些发现还揭示了对测量过程的有趣含义,证明了某些投射测量值的等效性。最后,重点放在该框架中数据分析的简单性上。这项工作有助于更深入地了解GSS的纠缠和连接性能,从而为量子信息处理和量子计算应用程序提供有价值的信息。在这项工作中不使用著名的稳定器形式主义,这是研究这种类型状态的通常首选框架。相反,这种方法仅基于期望值,量子相关性和投射测量的概念,这些概念具有非常直观和基本的量子理论工具。
越来越多的研究表明,功能连接组具有个体特异性,因此可以视为大脑指纹;即能够在健康 [1] 和疾病 [2], [3] 的人群中识别个体。传统的方法是将大脑区域视为顶点,将区域对之间的区域时间过程的统计依赖性成对度量(即皮尔逊相关系数)视为边权重,从而构建功能连接组 (FC)。人们已经使用不同的神经成像方式研究了 FC 的指纹潜力,即脑电图 (EEG) [4], [5]、脑磁图 (MEG) [6], [7] 和功能性磁共振成像 (fMRI) [1], [8]。所有这些研究都有助于从大脑连接数据中实现单受试者水平的推断,即通过利用不同认知任务和静息状态下功能网络组织的个体属性 [9], [10],或通过将个体连接组特征与行为和人口统计分数联系起来 [1], [6], [7], [9]。然而,传统的功能连接组不仅捕捉到了神经活动之间的统计依赖性,也捕捉到了潜在噪声源的统计依赖性。此外,功能连接组的构造仅提供大脑动态的成对表示,例如通过将大脑视为二元组的组合。由于其简单性,这一假设是有益的,但它限制了对人类大脑网络中个体特征的研究。因此,已经提出了基于主成分重建 [9] 或特征空间嵌入 [10] 的功能连接组去噪补救措施,每种方法都需要从潜在空间中学习基于空间的功能连接组。
药物开发是一个资源和时间密集型的过程,导致流失率高达 90%。因此,重新利用具有既定安全性和药代动力学特征的现有药物正成为加速治疗方法开发的一种方式,这种做法越来越受到关注。我们开发了独特的机器学习驱动的自然语言处理和生物医学语义技术,挖掘了超过 5300 万份生物医学文档,自动生成 911M 边缘知识图谱。然后,我们应用了子图查询,使用遗传证据将药物与疾病关联起来,以确定多种疾病的潜在药物重新利用候选药物。我们使用一种尚无已知治疗方法的疾病——卡尼综合征来说明我们的方法。该分析显示,芦可替尼(Incyte,商品名 Jakafi)是一种具有既定安全性和有效性特征的 JAK1/2 抑制剂,已获准用于治疗骨髓纤维化,它通过脱靶药物活性,成为治疗卡尼综合征的潜在候选药物。
本书包含从真实且备受推崇的来源获得的信息。已经做出了合理的努力来发布可靠的数据和信息,但作者和出版商不能对所有材料的有效性或使用后果承担责任。作者和出版商试图追踪本出版物中复制的所有材料的版权持有人,如果尚未获得此形式出版的许可,则向版权持有人道歉。如果尚未确认任何版权材料,请写信并告诉我们,以便我们将来在任何重印版中纠正。
图神经网络(GNN)在广泛的应用领域中已显示出良好的效果。大多数 GNN 实证研究直接将观察到的图作为输入,假设观察到的结构完美地描述了节点之间准确和完整的关系。然而,现实世界中的图不可避免地是有噪声的或不完整的,这甚至会降低图表示的质量。在本文中,我们从信息论的角度提出了一种新的变分信息瓶颈引导的图结构学习框架,即 VIB-GSL。VIB-GSL 是首次尝试推进图结构学习的信息瓶颈 (IB) 原理,为挖掘底层任务相关关系提供了更优雅、更通用的框架。VIB-GSL 学习一种信息丰富且压缩的图结构,以提炼出特定下游任务的可操作信息。 VIB-GSL 对不规则图数据推导变分近似,形成易处理的 IB 目标函数,有利于提高训练稳定性。大量实验结果表明 VIB-GSL 具有良好的有效性和鲁棒性。
增强概括并实现与人类用户的互动性。最近的方法可以使VLM通过单轮视觉问题答案(VQA)适应VLM,但人类驾驶员在多个步骤中的决策原因。从关键对象的本地化开始,人类在采取行动之前估计相互作用。关键洞察力是,通过我们提出的任务,图形VQA,我们在其中建模了图形结构的理由,通过感知,预测和计划问题 - 答案对,我们获得了一个合适的代理任务来模仿人类的推理。我们实例化基于Nuscenes和Carla建立的数据集(DRIVELM-DATA),并提出了一种基于VLM的基线方法(Drivelm-Agent),用于共同执行图形VQA和端到端驾驶。实验表明,Graph VQA提供了一个简单的原则性框架,用于推理驾驶场景,而Drivelm-Data为这项任务提供了具有挑战性的基准。与最新的驾驶特定架构相比,我们的Drivelm-Agent基线端到端自动驾驶竞争性驾驶。值得注意的是,当在看不见的传感器配置上评估其零射击时,其好处是明显的。我们的问题上的消融研究表明,绩效增长来自图表结构中对质量检查对质量检查的丰富注释。所有数据,模型和官方评估服务器均可在https://github.com/opendrivelab/drivelm上找到。
模型。drivelm-agent采用轨迹令牌092,可以应用于任何一般VLM [17、19、23、34],093,以及图形提示方案,该方案模型logi-094 cal依赖关系作为VLMS的上下文输入。结果095是一种简单,优雅的方法,可有效地重新利用096 VLMS用于端到端AD。097我们的实验提供了令人鼓舞的结果。我们发现098在Drivelm上的GVQA是一项具有挑战性的任务,其中Cur-099租金方法获得适中的得分,并且可能需要更好地获得逻辑依赖的100型,以实现101强质量质量质量强大的效果。即使这样,在开放环计划环境中进行测试时,Drivelm-Agent已经有102个已经在最先进的驾驶特定103型型号[13]中竞争性地发挥作用,尽管其任务不合时宜和通用架构,但仍有104个模型。fur-105 Hoperore,采用图形结构可改善零弹性106概括,使Drivelm-Engent在训练或部署期间在108 Waymo DataSet [28]进行训练或仅在NUSCENES [3] 109数据上训练后,在108训练或部署期间都看不见新颖的对象。从这些结果中,我们认为,提高GVQA 110具有建立具有强烈概括的自动驾驶111代理的巨大潜力。112
用于传输和分销网格的电网运算符的作用是确保始终可用性的可用性。但是,全世界的电力系统正在经历由二氧化碳中立的需求驱动的范式转变。由于供暖和交通部门电气化引起的可再生分布生成和额外的负载需求的整合引入了传统的电力系统操作正在努力应对的复杂性。这些趋势需要最佳操作Marot等的高级方法。(2021);凯利等。(2020)。正在进行的能源过渡还会影响其他利益相关者,例如能源市场参与者。他们需要适应分散的结构和新的市场参与者,例如电动汽车(EV)充电运营商。此外,持续的数字化和通信系统的构建将经典电力系统转化为网络物理能源系统(CPES)Steinbrink等。(2018)。所有这些新挑战为电网操作带来了新的复杂性。
增强概括并实现与人类用户的互动性。最近的方法可以使VLM通过单轮视觉问题答案(VQA)适应VLM,但人类驾驶员在多个步骤中的决策原因。从关键对象的本地化开始,人类在采取行动之前估计相互作用。关键洞察力是,通过我们提出的任务,图形VQA,我们在其中建模了图形结构的理由,通过感知,预测和计划问题 - 答案对,我们获得了一个合适的代理任务来模仿人类的推理。我们实例化基于Nuscenes和Carla建立的数据集(DRIVELM-DATA),并提出了一种基于VLM的基线方法(Drivelm-Agent),用于共同执行图形VQA和端到端驾驶。实验表明,Graph VQA提供了一个简单的原则性框架,用于推理驾驶场景,而Drivelm-Data为这项任务提供了具有挑战性的基准。与最新的驾驶特定架构相比,我们的Drivelm-Agent基线端到端自动驾驶竞争性驾驶。值得注意的是,当在看不见的传感器配置上评估其零射击时,其好处是明显的。我们的问题上的消融研究表明,绩效增长来自图表结构中对质量检查对质量检查的丰富注释。所有数据,模型和官方评估服务器均可在https://github.com/opendrivelab/drivelm上找到。
摘要 - MALWARE分析师通常更喜欢使用呼叫图,控制流程图(CFGS)和数据流程图(DFGS)的反向工程(DFGS),涉及黑盒深度学习(DL)模型的利用。拟议的研究介绍了一条结构化管道,用于基于逆向工程的分析,与最新方法相比,提供了有希望的结果,并为子图中的恶意代码块提供了高级的可解释性。我们将规范可执行组(CEG)作为便携式可执行文件(PE)文件的新表示形式提出,将句法和语义信息独特地纳入其节点嵌入。同时,Edge具有捕获PE文件的结构方面。这是介绍涉及句法,语义和结构特征的PE文件表示形式的第一项工作,而以前的努力通常仅集中在句法或结构属性上。此外,识别出恶意软件肛门的可解释人工智能(XAI)中现有图形解释方法的局限性,这主要是由于恶意文件的特异性,我们介绍了基于遗传算法的图形解释器(gage)。gage在CEG上运行,努力确定与预测的恶意软件家族相关的精确子图。通过实验和比较,与先前的基准相比,我们提出的管道在模型鲁棒性得分和判别能力方面表现出很大的改善。此外,我们已经成功地使用了对现实世界数据的实用应用,从而产生了有意义的见解和解释性。这项研究提供了一种强大的解决方案,可以通过对恶意软件行为有透明而准确的了解来增强网络安全。此外,所提出的算法专门用于处理基于图的数据,有效解剖复杂的含量和隔离影响的节点。索引术语 - 模式分析,可解释的AI,解释性,图,遗传算法