获取独家产品信息,尽享促销优惠!立即订阅,不容错过
* 限···时··优惠
对全球天气的中等程度预测在各个社会和经济领域的决策过程中起着关键作用。近年来,在天气预测中的机器学习(ML)模型应用程序的迅速发展,与传统的数值天气预测(NWP)模型相比,表现出色的性能显着。这些剪边模型利用了多种ML架构,例如图形神经网络(GNNS),卷积神经网络(CNN),傅立叶神经操作员(FNOS)和变压器。值得注意的是,Google DeepMind开创了一种基于ML的新方法,称为GraphCast,从重新分析数据中直接培训,并在不到一分钟的时间内促进了对众多天气变量的全球预测。令人印象深刻的是,图形播放预测在预测恶劣天气事件方面的准确性提高,包括热带气旋,大气河流和极端热量等现象。但是,Graphcast的效率依赖于高质量的历史天气数据进行培训,通常来自ECMWF的ERE5重新分析。