1部门电子和计算机技术,科学学院,格拉纳达大学,格拉纳达大学,18071年,西班牙。2部分析化学,科学学院,格拉纳达大学,格拉纳达大学,18071年,西班牙。3苏利亚州大学库利亚(Culiacan),80040,墨西哥的院士。4 cienciasfísico-Matemáticas,锡那罗亚大学,库里亚坦大学,80040,墨西哥。5 Inorangic化学和技术化学系,UNED,马德里28232,西班牙。 6部门 无机化学,科学学院,格拉纳达大学,格拉纳达大学,18071年,西班牙。 *通讯作者,alfonsos@ugr.es可用orcid列表:d.g. 0000-0002-7810-6345; Y.H. 0000-0002-1959-2187; F.J.R. 0000-0002-1582-9626; C.L.M. 0000-0002-6659-7781; I.B.P. 0000-0003-3997-9191; M.P.C. 0000-0001-8377-587X; D.P.M. 0000-0002-3294-8934,N.R。 0000-0002-6032-6921; A.S.C. 0000-0002-1360-6699。 摘要这项工作介绍了用于生物能力采集的激光诱导的石墨烯(LIG)电极的制造程序。 这项研究中提出的结果表明,与先前在文献中报道的其他基于LIG的电极获得的性能有关。 特别是,我们提出了使用电流测量激光器而不是CNC激光器来改善雕刻分辨率和LIG合成过程,从而增强了界面皮肤电极的表面积。 1。5 Inorangic化学和技术化学系,UNED,马德里28232,西班牙。6部门无机化学,科学学院,格拉纳达大学,格拉纳达大学,18071年,西班牙。*通讯作者,alfonsos@ugr.es可用orcid列表:d.g.0000-0002-7810-6345; Y.H.0000-0002-1959-2187; F.J.R.0000-0002-1582-9626; C.L.M.0000-0002-6659-7781; I.B.P.0000-0003-3997-9191; M.P.C.0000-0001-8377-587X; D.P.M.0000-0002-3294-8934,N.R。0000-0002-6032-6921; A.S.C.0000-0002-1360-6699。摘要这项工作介绍了用于生物能力采集的激光诱导的石墨烯(LIG)电极的制造程序。这项研究中提出的结果表明,与先前在文献中报道的其他基于LIG的电极获得的性能有关。特别是,我们提出了使用电流测量激光器而不是CNC激光器来改善雕刻分辨率和LIG合成过程,从而增强了界面皮肤电极的表面积。1。为此,我们研究了所得的LIG模式的电阻,这是寻求优化的激光参数(雕刻功率和扫描速度)的函数。调整激光制造过程后,我们使用商用的基于银基电极作为参考,使用不同表面积进行了制造和表征与不同表面积的电极。因此,使用直径为15毫米,10毫米和6.5毫米的圆形电极用于使用商业设备在不同志愿者上获取ECG。随后使用尖端处理技术处理所采集的信号,以对检测QRS复合物检测的灵敏度,特异性,积极预测和准确性进行统计分析。结果表明,在噪声方面,提出的电极相对于先前报道的基于LIG的电极改善了信号的采集,并且确实比商业电极(即使是较小的表面积)提出了可比较甚至更好的结果,并且不需要使用电解质凝胶,具有附加优势。关键字:激光诱导的石墨烯,心电图,柔性电子,生物信号,电极,激光制造。引言心血管疾病(CVD)是全球死亡的主要原因[1]。根据世界卫生组织(WHO)的报告,2019年与CVD有关的死亡人数为1790万,占全球死亡人数的32%。此外,据估计,到2030年,CVD死亡人数每年将增加到2360万[2]。这些设备有望在因此,已经致力于早期诊断,预防和治疗这些疾病。心电图(ECG)在这种情况下起着至关重要的作用,因为它可以通过非侵入性监测心脏的电活动来早期检测CVD。传统上,获得ECG需要医院就诊并使用复杂的监测系统。但是,可穿戴健康监测系统(WHM)的出现彻底改变了这一领域[3]。
全天。这意味着您只需要在启动时输入所有者密码,这使其非常强大。对于默认密码,请选择一个弱密码 +短锁定时间的组合,或一个强密码² +更长的锁定时间。第一个选项使信任限制密码尝试的速率限制了secure element²⁸。第二个选项并不能够信任限制速率,鉴于它可以通过安全的元素漏洞绕过,但是如果设备在解锁时无人看管,则配置文件数据是脆弱的。,如果您每天不多次解锁该设备,则还可以拥有一个强密码 +锁定时间。请记住,如果警察抓住您的设备(例如在白天的房屋突袭中),则应该将其关闭,至少应该锁定(该命中率(启动倒计时)至下面提到的自动重新启动功能)。•在默认用户配置文件中,您可以使用
摘要:在两个化学上相同但具有电子不同的过渡金属二进制(TMDS)之间的连接的超快载体动力学仍然很大程度上未知。在这里,我们采用时间分辨的光发射电子显微镜(TR-PEEM)来探测单层 - 型 - 次要人士(1L-ML)WSE 2连接的超快载体动力学。记录了连接的各个组件记录的tr-peem信号揭示了1L-和7L-WSE 2的子PS载体冷却动力学以及在1L-WSE 2上发生的几个PS激子 - 激子 - 激子 - 激子 - 激子。,我们观察到超高界面孔(H)在约0.2 PS时尺度上从1L--至7L-WSE 2转移。在7l-wse 2中,由于载体重组的重组在约100 ps的时间尺度上,其产生的过量H密度衰减。让人联想到耗尽区域的行为,TREEM图像揭示了H密度在7L-WSE 2界面上的积累,衰减长度约为0.60±0.17μm。这些电荷转移和重组动态与从头量量子动力学一致。计算的轨道密度揭示了电荷转移是从延伸到1L和ML区域的基底平面到位于ML区域上的上层平面。这种电荷转移模式与分层材料的化学均匀连接相关,并且构成了另一种载流子停电途径,应在对其ML旁边发现的1L-TMDS的研究中考虑,这是剥落样品中常见的情况。关键字:过渡金属二分法,外侧连接,界面电荷转移,时间分辨的光发射电子显微镜,超快光谱,非绝热的摘要分子动力学L
基于石墨烯的2D纳米材料具有独特的物理化学特征,可以在各种生物医学应用中使用,包括化学治疗剂的运输和表现。在多形胶质母细胞瘤(GBM)中,肿瘤内施用的薄石墨烯氧化石墨烯(GO)纳米片在整个肿瘤体积中表现出广泛的分布,而不会影响肿瘤生长,也不会扩散到正常的脑组织中。这种肿瘤内定位和分布可以为GBM微环境的治疗和调节带来多种机会。在这里,描述了原位GBM小鼠模型中GO纳米片分布的动力学,并利用薄GOETEs作为平台的一种新颖的纳米纳米化学化学治疗方法,可用于非共价复杂的蛋白酶体抑制剂bortezomib(BTZ)。通过GO的表征:BTZ复合物,在体外持续的BTZ生物学活性在GO表面上的高负载能力。在体内,与两种原位GBM小鼠模型中的游离药物相比,BTZ复合物的单个小量内给予:BTZ复合物显示出增强的细胞毒性效应。这项研究提供了证据表明,薄和小的Goets通过在本地增加生物利用药物浓度而成为GBM治疗的纳米级平台的潜力,从而提高了治疗性的影响。
自 2004 年首次成功分离石墨烯以来,凝聚态物理和材料科学对石墨烯产生了浓厚的兴趣。这种单层材料是所有维度石墨材料的基本组成部分,具有优异的电导率和热导率。石墨烯具有独特的能带结构,带隙为零,导带和价带在称为狄拉克点的点相接。这种不常见的能带结构使快速电子传输成为可能。通过调节石墨烯和基底材料之间的相互作用,可以在一定程度上调节能带隙的大小,从而实现半导体行为,即通过掺杂可以改变电导率。随着计算机芯片和其他现代电子产品在过去几十年中不断进步,它需要不断缩小的硅芯片,但目前的纳米制造方法无法使硅芯片比现在小得多。石墨烯被认为在未来的半导体电子设备中非常有前途,可以替代硅,因为它应该能够制造出比传统材料制成的器件薄得多的器件。然而,除非找到增加能隙的方法,并找到大量生产高质量单层石墨烯的方法,否则石墨烯取代半导体是不可能的。尽管石墨烯无法彻底改变半导体行业,但它在各种电子应用方面仍然很有前景。
石墨烯纳米纤维(GNR)由于通过边缘结构和色带宽度的变化来精确调整电子性能的潜力,因此在纳米电子学上引起了显着关注。然而,GNR与高度渴望的锯齿形边缘(ZGNR)的合成,对旋转和量子信息技术至关重要,仍然具有挑战性。在这项研究中,提出了用于合成一类称为边缘延伸ZGNRS的新型GNR类的设计主题。此基序可以定期沿曲折边缘的边缘扩展进行控制。与融合到功能区轴交替侧面的双斜烯单元的特定GNR实例(3- Zigzag行宽的ZGNR)的合成。 所得的边缘延伸的3-ZGNR使用扫描探针技术以其化学结构和电子性能进行了全面的特征,并取决于密度功能理论计算。 此处展示的设计主题为综合各种边缘扩展的ZGNR范围开辟了新的可能性,扩大了GNR的结构景观,并促进了其结构依赖性电子特性的探索。与融合到功能区轴交替侧面的双斜烯单元的特定GNR实例(3- Zigzag行宽的ZGNR)的合成。所得的边缘延伸的3-ZGNR使用扫描探针技术以其化学结构和电子性能进行了全面的特征,并取决于密度功能理论计算。此处展示的设计主题为综合各种边缘扩展的ZGNR范围开辟了新的可能性,扩大了GNR的结构景观,并促进了其结构依赖性电子特性的探索。
石墨烯是在二维蜂窝晶格中排列的单层碳原子,由于其出色的热和电性能,引起了人们的重大关注。其高热电导率(约5000 W/m·K)实现有效的散热,使其成为增强电子设备中热管理的理想材料。石墨烯有效地进行热的能力在各种应用中都利用,包括散布器,热界面材料和复合材料,改善了电子产品(例如处理器和LED)的性能和可靠性。除了其热益处外,石墨烯还具有非凡的电导率,电子迁移率达到200,000cm²/v·s。这种特殊的电导率是由于该材料的DELACALIGETINACTRAIGEDI-π电子和最小散射,从而显着增强了电子成分的性能。石墨烯用于导电油墨,晶体管,超级电容器和电池,推动柔性电子,高速晶体管和能量存储技术的进步。尽管有优势,但仍在大规模生产和将石墨烯集成到现有技术中的挑战。需要解决与生产成本,材料质量以及与其他物质兼容性相关的问题。正在进行的研究重点是改善合成技术和探索新的应用,并有望在各个行业中产生变革性的影响。简介石墨烯的优质热和电气性能可在热耗散和电子性能方面进行实质性改进,并可能扩大其应用并增强技术创新。
这项研究介绍了用于Covid-19检测的生物传感器的设计和分析,将石墨烯元面积与金,银和GST材料整合在一起。所提出的传感器架构将平方环谐振器与圆环谐振器结合在一起,并通过红外制度中的Comsol多物理模拟进行了优化。传感器表现出非凡的性能特征,在初级检测带(4.2-4.6μm)中的吸收值超过99.5%,次级带(5.0-5.5μm)中的吸收值约为97.5%。该设备表现出高灵敏度(4000 nm/riU),检测极限为0.078,优点为16.000riu⁻时,当利用晶体GST作为底物材料时。通过使用XGBoost回归的机器学习优化,传感器的性能得到了进一步提高,从而在各种操作参数之间实现了预测和实验值之间的完美相关性(R²= 100%)。双波段检测机制,结合了高级材料和机器学习优化的整合,为快速,无标签和高度敏感的COVID-19检测提供了有前途的平台。这项研究有助于开发用于病毒检测和疾病诊断的下一代生物传感技术。
摘要:石墨烯纳米纤维(GNR)由于具有高度可定制的物理化学特性和纳米电子学的潜在效用而引起了浓厚的兴趣。除了控制宽度和边缘结构之外,在GNR中包含手性的还带来了另一个维度来微调其光电特性,但是由于缺乏可行的合成策略,相关研究仍然难以捉摸。在这里,我们演示了具有可调手性载体(N,M)的新型Cave-Edged手性GNR(CCGNR)。值得注意的是,(n,2)-CCGNR的带隙和有效质量与n的增加值呈明显正相关,如理论所示。在这个GNR家族中,成功合成了两个代表成员,即(4,2)-CCGNR和(6,2)-CCGNR。两个CCGNR均表现出由沿其外围的掺入[4]螺旋序引起的尤其弯曲的几何形状,也证明了两种相应模型化合物的单晶结构(1和2)也证明了这一点。通过IR,Raman,Raman,Solit-State NMR,UV-VIS和THZ光谱镜以及理论计算的组合,全面研究了(4,2) - 和(6,2) - CCNR的化学身份和光电特性。符合理论期望,获得的(6,2)-CCGNR具有1.37 eV的低光带隙,以及〜8 cm 2 v -1 s -1的电荷载流子迁移率,而(4,2)-CCGNR表现出1.26 EV的较窄频率为1.26 EV,其移动性为〜14 cm 2 v -1 s -1 s -1 s -1 s -1。这项工作为通过操纵手性载体而精确地设计了GNR的带盖和载体移动性的新途径。