甲烷(CH 4)排放通常贡献GHG的最大比例•CH 4英国占农业温室气体的60%的贡献•一氧化二氮的排放(N 2 O)是一种重要的温室气体(第三次持久),贡献了英国的36%
多年来,许多纽约州环境保护部 (NYSDEC) 工作人员与外部组织一起努力制定了这一战略。NYSDEC 工作人员包括主任 Riexinger、局长 Batcheller 和 Farquhar、鸟类部门负责人 John Ozard、栖息地和通道部门负责人 Marcelo del Puerto、野生动物多样性部门负责人 Dan Rosenblatt、区域经理 Wasilco 和 Joule、Heidi Kennedy、Irene Mazzocchi、Paul Novak、Mike Morgan、Jed Hayden、Lisa Masi、Katherine Barnes、Bonnie Parton、Oliver Riley、Matt Palumbo 和 Ashley Meyer。外部组织和工作人员包括纽约奥杜邦协会 (Mike Burger、Andy Hinickle、Jillian Liner)、康奈尔鸟类学实验室 (Ron Rohrbaugh、Sara Barker)、佛蒙特生态系统研究中心 (Roz Renfrew)、美国森林服务局 (Finger Lakes 国家森林公园 - Greg Flood)、纽约州立大学布罗克波特分校 (Greg Lawrence、Chris Norment)、纽约州自然遗产计划 (Matt Schlesinger、Tim Howard)、自然资源保护局 (Kim Farrell、Val Podolec) 和美国鱼类和野生动物管理局 (Scott Lenhart、Chelsea Utter)。感谢所有参与这项工作的人,非常感谢你们的贡献。
物种在自然界中的作用和相互作用会影响生态系统功能(例如碳和营养循环),从而产生了人类依赖的服务(例如碳固存,水纯化)(图1)。生物多样性与生态系统功能之间的联系数十年来一直具有魅力的生态学家,而草原提供了重要的研究系统(例如[1])。虽然早期研究集中在单个生态系统功能上,但生态系统同时提供的多种功能和服务的认识却导致询问朝着对生态系统多功能性的更综合评估(EMF,[2])的转变。这种变化与对人类驱动的全球生物多样性下降的了解的越来越多,这激发了新一代的生态研究。这些寻求了解多营养社区在提供EMF方面的互补性和冗余,尤其是在生态系统变化的关键驱动因素的背景下,例如增加CO 2 [3],变暖[4]和干旱[5]。本质上,这些研究问:“在人们开始感受到它之前,自然可以忍受多少生物多样性损失?”除经验研究外,观察性研究还产生了基本见解。例如,Jing及其同事[6]表明,气候的区域尺度变化改变了生物多样性对EMF的影响,土壤水分是这种变化的关键驱动力。在这个问题中,Martins及其同事[7]进一步促进了我们对水分压力如何改变生物多样性对EMF的相对贡献的理解。他们发现高相关他们将研究放在草原干旱化的背景下,这种渐进干燥影响了全球40%以上的土地。降雨不足和气候变暖会导致干旱(即长时间的土壤水分赤字),加剧不适当的土地利用并驱动草地的生物多样性损失。但是,我们仍然几乎不知道这些在全球范围内如何改变草地EMF。他们通过在令人印象深刻的101个全球分布的草原和大规模干旱中菌研究中测量EMF来解决这个问题。在全球调查中,他们阐明了植物和土壤微生物多样性在支持101个草原EMF方面的共同和独特贡献。
缩写39 B燃烧40 BD土壤散装密度41 C碳42 c/n碳与氮的比率43 CHG控制高放牧44 clg控制低擦伤45 CV的45 CV系数{ 51 LONG Longitude (°) 52 M Mowing with residues retained 53 MAP Mean annual precipitation (mm year -1 ) 54 MAT Mean annual air temperature (°C year -1 ) 55 Max Maximum 56 Min Minimum 57 PC Principal Component 58 PCA Principal Component Analyses 59 Quart Quartile 60 SEM Standard error of mean 61 SOC C Change in soil organic carbon content (%) 62 SOC S Soil organic carbon stocks (kg C平方米)63儿子土壤有机氮含量(%)64 z高度(MASL)65 ∆ SOC C C c土壤有机碳含量的变化(%)66 ∆ SOC C> 0具有积极变化土壤有机碳含量(%)的研究数量67 ∆儿子在土壤有机硝基含量中的变化(%)n N硝基含量(%)68 ∆ bd in n n ∆ bd Menter in n ∆ bd Menter n n ∆ n ∆ n ∆ crantigon(%)69999999999。比率(%)70 71
是一个用于固体有机废物利用的江苏省密钥实验室,中国有机肥料的关键实验室,江苏固体有机废物的合作创新中心,资源储蓄肥料的教育部工程中心,省资源的肥料中心6700 AA,荷兰C学系,真正的JardínBot'anico-csic,马德里,西班牙,草药改善的国家主要实验室和草原农业生态系统,兰州生态学院,兰州兰州大学,兰州,兰州,兰州,甘努省,甘苏省,甘苏省,甘苏省,gepole of caul o ecologe e Ecologe of Ecology of Ecologe of Ecology of Ecologe of Ecology of Ecology of Ecologe of Ecologe of Ecologe of Ecologa宾夕法尼亚州大学公园,宾夕法尼亚大学公园,宾夕法尼亚州16802,植物科学与哈克生命科学研究院,宾夕法尼亚州立大学,宾夕法尼亚州立大学,美国宾夕法尼亚州立大学公园,美国宾夕法尼亚州大学公园,美国生态学和生物多样性小组,宾夕法尼亚州立大学公园,宾夕法尼亚州立大学,宾夕法尼亚州立大学,宾夕法尼亚州生命科学研究所,宾夕法尼亚州16802 3584 CH,荷兰
植被恢复和管理下降生态系统的关键实验室,植物多样性和特种作物的国家主要实验室,广东省应用植物学省级省级植物学省级主要实验室,中国植物学花园,中国科学院,科学院约克合作鱼与野生动物研究部,自然资源与环境系,康奈尔大学,纽约州纽约州纽约大学14853年,美国D Powerchina Northwest Engineering Corporation Limited,XI'AN 710065,E EARKION,E ENCOMERAL,ENVORENDORAL和MARINE SCIENCES和MARINE SCIENCES和MARINE SCIENCES和MARINE SCIENCES和MARIAN SCIENCES,德克萨斯州Rio Grande Valley University of Edinburg tx 788553,University and University and University and University and Unifert美国纽约州12222,美国g能源与环境局,西北国家实验室,西北国家实验室,华盛顿州里奇兰市99354,美国H大气科学中心,印度科学研究所,德里,德里,印度110016,印度I国家风力技术中心,国家可再生能源实验室,美国戈尔登公司80401,美国哥伦比亚省全球开发,康涅尔大学,美国国家风能可再生能源实验室。
微生物坏死是土壤有机物的重要组成部分,但是它的持久性和对土壤碳固醇的贡献的量很差。在这里,我们投资了死灵剂与土壤矿物质的相互作用,并将其持久性与西北英国低层和高管理强度下的草地土壤中的植物垃圾相提并论。在1年的基于实验室的孵化中,我们发现植物叶窝的碳矿化速率高于根垃圾和坏死剂,但发现1年后碳持久性没有显着差异。在一个领域的实验中,大约三分之二的同位素标记的坏死量在3天内与矿物质相关。矿物质相关的碳的下降速度比氮的速度迅速,在8个月内,两者在增加的管理强度下的持久性持续增强。我们建议,碳矿化率与碳持久性解耦,而死灵量碳的持续性较小,而碳则不如核肿瘤氮,而农业管理强度会影响草原的农业隔离。
随着全球气候变化和人类活动对陆地生态系统的日益增长,了解高山草原生态系统及其影响因素的质量对于有效的生态系统管理和改善人类福祉是至关重要的。但是,基于多标准评估的高山草原的当前自适应管理计划有限。这项研究利用了77个采样点,无人机遥感和卫星遥感数据的领域研究,根据植被和土壤指示器构建高山草原质量指数,并评估生态系统的弹性和压力。评估表明,藏族高原的高山草原被分为五个区域,表明质量和压力水平的显着差异。关键发现表明,高质量的压力区占高山草甸面积的41.88%,占高山草原的31.89%,而质量改善限制区则占相应区域的21.14%和35.8%。该研究建议基于质量水平的高山草原的分级保护和恢复策略:优先考虑高质量的草原,对中等优质草原的动态监测和增强,并应用人工干预措施以及适合低品质草原的物种。这项研究强调了基于分区的自适应策略对可持续生态系统管理的重要性,并为在藏族高原的有效管理和保护高山草原提供了宝贵的见解。
气候变化以温度和降雨的长期趋势为特征,近年来已经成为一个突出的关注(Seddon等,2016),对森林和草原生态系统的全球碳,水和能量周期产生了重大影响。此外,极端天气事件的频率增加可能会对各种陆地生态系统产生毁灭性后果(IPCC,2023年)。为了进一步研究气候变化对森林和草原生态系统的影响,并支持中国达到其达到其峰值二氧化碳排放和碳中立目标的努力,提出了这一研究主题。该研究主题包括23篇原始研究文章和1篇意见文章,介绍了以下领域的最新进展:(1)森林和草地生态系统响应气候变化的碳,水以及能量循环,以及(2)植被特征和生态系统稳定性的响应和适应性。
关于根特征的最新研究表明,有两个轴解释了地下的特征变化:与菌根合作伙伴的协作轴和保护和保护(“快速 - 慢”)轴。然而,这些特征轴是否影响土壤传播真菌的组装尚不清楚。我们期望腐生性真菌与根特征的保护轴相连,而致病性和羊膜菌根真菌真菌与协作轴的链接相反,但在相反的方向上,如弧形菌根菌根真菌可能提供致病原的保护。为了检验这些假设,我们测序了根际真菌群落和25种草地植物物种的单一培养物中的根特征,年龄不同。在真菌公会中,我们评估了真菌物种的丰富度,相对丰度和社区组成。与我们的假设相反,真菌多样性和相对丰度与根特征轴没有密切相关。然而,腐生真菌群落组成受到菌群梯度的保护梯度和致病群落组成的影响。根际AMF社区组成并未沿协作梯度发生变化,即使根性状轴与根菌根菌落定殖速率一致。总体而言,我们的结果表明,从长远来看,根特性轴与真菌群落组成有关。
