现在,我们知道了我们的示例的基线栖息地类型和状况(状况良好的酸草)以及干预后的栖息地类型和状况将是什么(去除INNP后处于中等状态的酸草原),可以将其输入度量。以及本文未讨论的指标中的其他因素(例如,战略意义),该指标随后为基线栖息地和干预后栖息地产生生物多样性价值(以生物多样性单位进行了测量)。如果干预后栖息地的生物多样性单位得分高于基线栖息地的生物多样性单位得分,则您可以在生物多样性单位获得净收益。生成的生物多样性单元的确切数量将取决于各种因素,包括大小,位置和状况。
大部分场地被茂密的干草地覆盖 干草地和草地边缘 (GS2) 干草地和草地边缘 (GS2) 干草地和草地边缘 (GS2) 干草地和草地边缘 (GS2)。由于割草不规律且没有清除任何杂草,该地区主要由高大的多年生草本植物和阔叶草本植物组成,例如大豕草 Heracleum spondilium 、Alexanders Smyrnian duastrum 和 Cow Parsely Anthriscus sylvestris 。场地东部的大部分茂密草地正逐渐被蕨类植物 Pteridium aquilinum 和黑莓 Rubus fructiosus 所取代。西部草原场中心部分是物种最丰富的区域,干地干地干地石灰质石灰质石灰质石灰质GGGG草原(GS1)草原(GS1)草原(GS1)草原(GS1),该区域与 1990 年代后期作为拟议开发的一部分被移除表土的区域相对应。这片贫瘠土地上的植被支持着四种兰花,与欧盟栖息地指令附件 1 列出的“富含兰花的石灰质草原”栖息地有着密切的联系。兰花相继出现,金字塔兰 Anacamptis pyramidalis 在五月中旬最先开花,随后是紫沼泽兰 Dactylorhiza incarnata subsp incarnata。然后 Dactylhoriza sp. 大量出现,有超过 50 个花穗。蜂兰 Ophrys apifera 在 6 月份的两周内开花并结籽。草原上长满了毛茸茸的 Vicia hirsuta、黄花菜 Rhinanthus minor 和红花菜 Odontites vernus,此外还有更高大、生长旺盛的植物,尤其是常见的鸟足三叶草 Lotus corniculatus、普通矢车菊 Centaurea nigra 和红羊茅 Festuca rubra。由于该地点靠近大海,因此这里还有海车前草 Plantago maritima、Thrift America maritima 和细蓟 Carduus tenuiflorus。
曾经耕作,在20世纪,gunbarrel Hill项目区域是OSMP运行时间最长的草地修复项目的所在地。在1980年代的包裹上购买了土地后,开放空间与USDA自然资源保护局合作,通过与本地草播种来稳定和改善土壤。三十年后,本地草皮和高度现在在博尔德县创造了一些最好的筑巢鸟类栖息地(图3)。仍然,由于栖息地丧失,许多鸟类种类在大平原上正在下降。实际上,在过去40年中,国家奥杜邦学会记录了八种草地鸟类的50%人口下降。(Butcher and Niven 2007)。有关涵盖现有条件的网站上更详细的资源图,请参见附录A。
目前,马达加斯加有80%是无树的草原。在大约0.5 - 1 KA引入牧民之前,请识别失落的稀树草原林地和草原,森林和荒地(Hixon等人,2021年),该岛上的保护/修复岛上的保护/修复。Gillson等。(2023;以后的G2023)警告说,“所有稀树草原和荒地作为退化的森林在生态上都是不准确的”二进制分类,这使“森林 - 草地之间的虚假二分法”和“脱离了Heathlands and Scartion and Savannans and Savannas。”我们同意,很惊讶地看到我们归因于我们(Joseph and Seymour,2020,2021;此后的J&S20,21),此后两年,我们揭穿了Madagascar的中部高地(MCH)的“ Forest-Grassland” Dichotomies。我们得出结论:“这项跨学科的审查挑战了百年历史的极端观点……证据不支持(1)森林中有二次草原的森林MCH……也不支持(2)MCH,其特征是巨大的自然无天然草地……发现的结果支持了更林木,更繁华的ericoid-rich rich过去,与林地相处的草丛和林地相处,像林地一样, 在细尺度上,一个复杂的马赛克……似乎很可能,包括较小的无树草地”。 我们假设一个八份马赛克(不是两个),稀树草原> 30%,荒地比今天高10倍(Joseph et al。,2021)。 我们清楚地(1)反对和反对二分法,(2)从未发现“所有的稀树草原和荒地”被降解为森林。在细尺度上,一个复杂的马赛克……似乎很可能,包括较小的无树草地”。我们假设一个八份马赛克(不是两个),稀树草原> 30%,荒地比今天高10倍(Joseph et al。,2021)。我们清楚地(1)反对和反对二分法,(2)从未发现“所有的稀树草原和荒地”被降解为森林。
1.2.1。该地点位于埃塞克斯(Essex)的克拉弗林(Clavering)村的东北,位于Stickling Green Road和Arkesden Road(Clatterbury Lane)的交界处。在该地点的直接东部是一个属于板球酒吧的溢流停车场,除了动物饲料和家具店,后者位于该地点的东南部。住宅和耕地向东延伸到Clatterbury Lane之外。一个可耕地的田地还界定了西部地点边界,北部的农田也位于北部,超越了绿色路,住宅物业和商业庄园。一个改良的草原田地位于现场的南部,东南部很难。1.2.2。该地点主要包括中性草原,低地混合落叶林沿着北部边界存在。本地的树篱和天线沿西部,南部和东部现场边界存在(请参阅Plan Eco2)。1.3。生物多样性净收益报告
放牧对草原的植物多样性和生产力产生了深远的影响,同时对调节草原土壤碳固醇产生了重大影响。此外,除了改变植物群落的分类多样性外,放牧还会影响其功能性状的多样性。但是,我们仍然不太了解放牧如何改变草地生态系统中植物功能多样性(FD)和土壤碳固存之间的关系。在这里,我们进行了放牧的操纵实验,以研究不同放牧方案(无放牧,绵羊放牧(SG)和牛放牧(CG))对植物FD与草皮和沙漠草原中土壤碳序列之间关系的影响。我们的发现表明,不同的牲畜物种改变了草地草原中植物FD与土壤有机碳(SOC)之间的关系。sg脱钩了FD与SOC之间最初的积极关系,而CG将关系从正面变为负面。在沙漠草原中,SG和CG都加强了FD与SOC之间的积极关系。我们的研究阐明了牲畜物种对土壤碳固存的复杂机制的相当大影响,这主要是通过调节各种功能性状多样性措施来介导的。在未遗传的草地和放牧的沙漠中,维持高植物FD有利于土壤碳固存,而在放牧的草地和未赖因的沙漠中,这种关系可能会消失甚至逆转。通过测量性状并控制放牧活动,我们可以准确预测草地生态系统中的碳固存潜力。
1霍克斯伯里环境研究所,西悉尼大学,澳大利亚彭里斯,2个实验室,生物多样性的实验室,y funcionamiento ecosiste´mico Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China, 4 Environmental Sciences and Engineering, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia, 5 Instituto Multidisciplinar para el Estudio del Medio “Ramo´n Margalef”, Universidad de Alicante, San Vicente del Raspeig,Alicante,西班牙,6森林资源系,明尼苏达大学,明尼苏达州圣保罗大学,美国,美国7研究所,全球变化研究所,环境与可持续发展学院,密歇根大学,密歇根州安阿伯,密歇根州安阿伯,美国密歇根州,美国,美国,美国。
