这项贡献的主要目标是展示如何在量子信息的语言中重塑许多量子重力形式主义,以及如何在量子量子的结构中,在相同的形式主义中如何看待纠缠或纠缠或量子相关性。即使我们将简要概述的少数结果中,这也不是综述,更不用说对量子重力形式主义中的纠缠和量子信息特征进行的实质性研究。对于后者,我们指的是[1,2],必须限于在量子重力上下文中获得的结果,更接近我们的重点。我们发现采用方便的观点是为了欣赏量子信息理论结构在这些量子重力形式主义中的作用,是新兴的时空,即是量子重力作为“时空成分”的理论,其时空本身,地理位置和领域是新兴实体[3,4,5,6,7]。This perspective is motivated by several results in semiclassical physics, for example black hole thermodynamics and the information paradox, gravitational singularities, that all point in various ways to a breakdown of key notions on which standard continuum, geometric physics is based, and, more indirectly, the results of analogue gravity in condensed matter systems, showing how effective field theory on curved backgrounds can emerge rather generically from non-gravitational系统。这也是由现代量子重力方法的结果,包括我们在这项贡献中关注的方法的动机,并以
这篇评论的目的是讨论如何通过考虑社会技术和相关文献的见解来使可持续能量转移途径的能源场景的定量建模如何更现实。的主张是,一种丰富的建模方法不仅关注技术开发和部署,还集中在反馈循环,学习过程,政策和治理,行为变化,能源部门与其他经济领域之间的相互联系以及基础设施之间的相互联系。评论讨论了一系列社会技术概念,以期如何丰富高度复杂的动态系统的理解和建模,例如具有可变可再生能源的较高份额的柔性能源系统。在这种情况下,还通过描述使用计量经济学和线性编程方法的SDM和传统建模方法之间的差异来介绍系统动力学建模(SDM)用于分析能量转换的应用。通过使用因果环图提供了此类模式的概念框架。这些图说明了SDM的内源方法 - 理解和建模系统的结构,这是负责其动态行为的。SDM还可以在足够长的时间内捕获经济,政策,技术和行为因素的共同发展,这对于分析过渡途径动态是必不可少的。在这方面,审查概念了如何在SDM中与社会技术概念进行联系,以及它们与能源系统灵活性分析相关的原因。从计算的角度来看,将SDM与技术详细的能源系统优化模型相结合可能是有益的,这可能是实现可持续能源过渡的更现实,非线性定量建模的前进的道路。
1国际应用系统分析研究所(IIASA),A-2361奥地利Laxenburg,奥地利2号2号环境工程学院,弗罗茨瓦夫科学技术大学,50-370弗罗斯兰370 - 370年,波兰3,波兰3号电气和电子工程学院,东北部中国电力大学,北欧电力大学,北欧电力大学,102206,102206,环境保护和环境保护及环境保护,沃克沃克,沃克沃克,沃克沃克,沃克沃克沃克及以环境保护为50,及以上波兰的弗罗茨瓦夫5电力部门研究小组,里约热内卢大学,里约热内卢21941-901,巴西6水,能源和环境工程研究部,Oulu,Oulu,90570,ULULU,ULUU,ULUU,ULULU,ULUU 90570,芬兰大学770年7月78000 Kopiriia copururiy sciultia sciultia sciultia sciultia sciultia sciultia sciultia sciultia sciultia sciultia for 20999年汉堡,德国9沙漠农业中心,阿卜杜拉国王科学技术大学,东蒂瓦尔23955-6900,沙特阿拉伯 *通信:zakeri@iiasa@iiasa.ac.at
慢性疼痛是指持续3个月的疼痛,大部分时间都存在[1]。它影响了大约18%的普通人群[2]。慢性疼痛的管理是主要的健康和社会挑战。它与与缺勤,过度与健康相关的费用以及在所有其他医疗保健状况中生活的最高年龄有关的成本非常高。除了与其感觉症状有关的明显痛苦之外,慢性疼痛与情绪,行为和认知症状的负相处[3-6]合并。慢性疼痛可以分为三个机械组:伤害性疼痛(持续性炎症会导致塑性外周血和中心变化,例如疼痛,例如骨关节炎,癌症);神经性疼痛(与体感系统的病变或疾病有关的疼痛,例如糖尿病神经病,中风);和Nociplastic疼痛(
1蒂安辛任务的主要实验室,蒂安辛重力物理与物理与天文学研究中心,蒂安平的边境科学中心,西萨斯州引力波研究中心,孙子耶特大学(Zhuhai校园),珠海人519082,人民的重格实验性,莫斯特式实验室,华盛科技大学物理学院,武汉430074,中华人民共和国3天文学与太空科学学院,以及现代天文学与天体物理学的主要实验室(南京大学),南京大学教育部,南京大学,南京210023,中国。4太空科学学院,山东大学,山东大学空间科学研究所,中国264209†这些作者为这项工作做出了同样的贡献。 * suwei25@mail.sysu.edu.cn4太空科学学院,山东大学,山东大学空间科学研究所,中国264209†这些作者为这项工作做出了同样的贡献。* suwei25@mail.sysu.edu.cn
这项研究分析了F(Q,t)重力框架内的at Rallatar的物理特征,其中Q是非金属标量表,t是能量量张量的痕迹。静态是黑孔的可行替代品,具有中央的保姆核心,周围的薄外壳和Schwarzschild外观中的动态层,将这两个区域分开。使用Finch-Skea度量,得出了核心和壳的必要场方程,而以色列交界处的条件保持了内部和外部区域之间的无缝连接。这项工作广泛探讨了关键方面,例如能量分布,适当的长度,能量条件,熵和状态参数方程。通过有效的电势,红移,因果关系条件和ADIA-BATIC指数来研究模型的稳定性。我们的结果突出了修饰的重力在维持压力杆的结构生存力和稳定性方面的重要作用。
a 维也纳量子光学和量子信息研究所(IQOQI),奥地利科学院,Boltzmanngasse 3,A-1090 维也纳,奥地利 b 维也纳量子科学与技术中心(VCQ),维也纳大学物理学院,Boltzmanngasse 5,A-1090 维也纳,奥地利 c 牛津大学计算机科学系量子组,Wolfson 大厦,Parks Road,牛津,OX1 3QD,英国 d QICI 量子信息与计算计划,香港大学计算机科学系,香港薄扶林道 e 艾克斯-马赛大学,土伦大学,CPT-CNRS,F-13288 马赛,法国。 f 哲学系和罗特曼哲学研究所,1151 Richmond St. N London N6A5B7,加拿大和 g Perimeter Institute,31 Caroline Street N, Waterloo ON, N2L2Y5,加拿大(日期:2022 年 7 月 8 日)
摘要。检测引力介导的纠缠可以提供引力场遵循量子力学的证据。我们报告了使用光子平台模拟该现象的结果。该模拟测试了通过使用变量来介导纠缠来探测变量的量子性质的想法,并产生了理论和实验见解,阐明了未来引力实验所需的操作工具。我们采用三种方法来测试纠缠的存在:贝尔测试、纠缠见证和量子态断层扫描。我们还模拟了引力坍缩模型预测的或由于实验装置不完善而导致的替代方案,并使用量子态断层扫描来证明不存在纠缠。模拟强化了两个主要教训:(1)哪些路径信息必须首先编码,然后从引力场中相干地删除;(2)进行贝尔测试可以得出更有力的结论,证明存在引力介导的非局域性。