在一个多折的宇宙中,重力从纠缠中通过多重机制出现。结果,重力样效应出现在它们是真实或虚拟的纠缠粒子之间。远距离,无质量的重力是由无质量虚拟颗粒的纠缠导致的。大量虚拟颗粒的纠缠导致非常小的尺度上的重力贡献。多重机制也导致了一个离散的时空,具有随机的行走分形结构和非交通性几何形状,该几何形状是Lorentz不变的,并且可以用显微镜黑洞对时空节点和颗粒进行建模。所有这些恢复在大尺度上的一般相对论,半古典模型保持有效,直到比通常预期的尺度较小。重力可以添加到标准模型中。这可能有助于解决标准模型(SM)的几个开放问题,而没有重力以外的其他新物理学。这些考虑暗示了重力与标准模型之间的更强关系。
伽罗瓦群置换多项式的根,多项式通过 M 8 − H 对偶确定时空区域。根对应于质量平方值,一般为代数数,因此对应于 M 4 c ⊂ M 8 c 中的质量双曲面。H 图像对应于光锥固有时间常数值 a = an 的 3 双曲面。因此,伽罗瓦群可以置换具有类时分离的点。但请注意,a 的两个值的实部或有理部可以相同。这乍一看很奇怪,但实际上证实了这样一个事实:定义 TQC 的类时辫对应于定义弦世界面的弦状对象的 TGD 类时辫(也涉及重新连接),它们现在不是作为物理状态的类空实体的时间演化,而是对应于定义完全固定全息术所需边界数据的类时实体。它们的存在是由于所涉及的作用原理的决定论的微小失败而必然出现的,并且完全类似于肥皂片的非决定论,肥皂片的框架充当了决定论失败的座位。
tr框架并激励该报告,我们从现有的2G检测器科学协作的背景开始,并概述了当前使用的计算模型和方法。有关推动计算需求的科学的其他背景,请参阅3G科学案例报告。[1]高级LIGO/高级处女座协作(LVC)由位于汉福德(WA),利文斯顿(Livingston)(La)和PISA(意大利)的三个重力波(GW)干涉仪组成。在2015年9月,LVC开始了一系列高级ERA探测器运行,命名法“ O#”。o1从2015年9月到2016年1月,以及对GWS的首次检测,该运行以检测三个二进制黑洞(BBH)合并而告终。O2从2016年12月到2017年8月底运行。 以及对许多其他BBH合并的检测,O2首次看到合并的两个中子星(BNS)。 O3始于2019年4月1日,由于Covid-19-Pandemics施加的锁定,已于2020年3月27日终止。。 进一步预计日本干涉仪Kagra将加入即将到来的O4跑步。 从数据分析计算的角度来看,从O1到O2的过渡是搜索和参数估计阶段所需的计算能力的提高。 在搜索(检测)阶段,波形模板库的大小增加以适应较大的质量。 这些分析中最多的10个计算密集型占需求的90%,其余的70个尾巴很长。O2从2016年12月到2017年8月底运行。以及对许多其他BBH合并的检测,O2首次看到合并的两个中子星(BNS)。O3始于2019年4月1日,由于Covid-19-Pandemics施加的锁定,已于2020年3月27日终止。。 进一步预计日本干涉仪Kagra将加入即将到来的O4跑步。 从数据分析计算的角度来看,从O1到O2的过渡是搜索和参数估计阶段所需的计算能力的提高。 在搜索(检测)阶段,波形模板库的大小增加以适应较大的质量。 这些分析中最多的10个计算密集型占需求的90%,其余的70个尾巴很长。O3始于2019年4月1日,由于Covid-19-Pandemics施加的锁定,已于2020年3月27日终止。进一步预计日本干涉仪Kagra将加入即将到来的O4跑步。从数据分析计算的角度来看,从O1到O2的过渡是搜索和参数估计阶段所需的计算能力的提高。在搜索(检测)阶段,波形模板库的大小增加以适应较大的质量。这些分析中最多的10个计算密集型占需求的90%,其余的70个尾巴很长。在参数估计阶段中,虽然每次运行的计算成本几乎与O1中的计算成本相同,但GW来源的数量大大增加,以及BNS合并发现所需的探索性运行数量,导致计算成本爆炸。此外,这些发现提供了一个机会,可以进行不可预见的计算密集分析,以测量哈勃 - 莱默焦点常数H0,测试GR的有效性并限制中子星体的内部物理学。在其第三次观察跑步(O3)中,Ligo-Virgo协作估计其正在进行的数据分析计算要求为7亿CPU核心小时1年,以执行80个天体物理搜索,随访活动和检测器表征活动。大多数计算都由搜索“深”的“深”搜索“深”的高吞吐量计算(HTC)组成; 10%用于生成多通间剂(电磁,中微子)随访的快速警报所需的低延迟数据分析。几乎不需要高性能并行计算,而这些仿真不包括在本评估中。在O1期间,绝大多数计算能力是由专用的Ligo-Virgo群集(无论是现场还是在大型计算中心)提供的,在O2和O3期间,越来越多地使用了外部共享计算资源。共享外部计算资源的增长促使开发了分布式计算模型,类似于大型LHC协作使用的计算模型。此外,处女座,Ligo和Kagra的合作正在加入从部分互操作的计算资源转变为完全共享的共享常见计算基础架构
构建一种理论,即统一量子力学(QM)和一般相对论(GR)一直是一项近一个世纪的努力,一直持续到今天。即使在理论量子重力方面取得了长足的进步,我们仍然没有完整的解决方案。也许是由于这项努力的巨大困难,因此早期实现了体验物理学在量子重力领域中起着的关键作用,这是早期实现的,这是对重力波(GWS)在2015年提高引力波(GWS)的首次观察的作用[1-4]。在2016年GW发现论文之前,量子重力实验探针的建议包括γ射线爆发[5],米歇尔森实验室量表的干涉仪[6],超高的能量宇宙射线和界面[7] [7] 9],重力耦合G [10,11],量子与重力散射[12,13],分子干涉测定法[14],洛伦兹违反了签名和约束[15],以及许多其他[16] [16] [16],两种模型依赖于模型的空间(例如,弦量量子量)(例如,弦量量子量)(例如,独立的量子)。从2016年开始,在越来越多的新(或更新)的实验溶液(包括干涉仪)中,可以检测到GW的较弱领域中可能弱的信号。实际上,尽管GR正确地解释了所有当前的GW观察结果[17-19]和重力测试[20],但仍然有可能
抽象的量子步行是在位置空间叠加中粒子的多路径间相互之间和更快传播的同义词。我们研究了模仿步行者两个状态之间模仿量子机械引力相互作用的量子机械相互作用的影响。该研究是为了研究两个不相互作用的量子步行者之间的纠缠产生。我们看到,随着量子行走的发展,各州实际上会越来越多地陷入困境,并且纠缠产生的依赖性依赖于两个粒子进行步行的质量。随着噪声引入动力学,我们还显示了两个步行中引入的噪声上两个步行者之间纠缠的敏感性。引力相互作用引起的量子效应的特征突出了量子系统在探测重力性质中的潜在作用。
2021理事委员会西里莎·班德拉(Sirisha Bandla)维珍银河银河系托马斯·格雷厄姆(Thomas Graham)圭尔夫·卡斯特里(Thomas Graham)。Gioia Massa NASA KSC Jeff Willy Wake Forest University William Meer Usra,Cleveland俄亥俄州Michael Roberts Iss Iss-NL/Casis sarah Sarah Swanson Univ,威斯康星州麦迪逊 - 麦迪逊·艾伦佛罗里达大学
在生物学和物理科学中微重力研究的重要性这一基本的生物学和物理科学研究是进入创新的生物学和技术突破的渠道。例如,通常植物的根源向下生长,在那里他们很容易吸收水和养分进入土壤。在太空中,根部朝各个方向生长,水和其他必要的植物食品漂浮。与植物在太空中的研究致力于系统研究,这些研究探讨了高等植物生活中各个阶段重力扮演的作用。研究的重点是重力与其他环境因素与植物系统的相互作用,并使用超重力,模拟的低重力和微重力作为提高植物生物学基本知识的工具。研究结果为进一步的人类探索空间的努力做出了贡献,并通过在医学,农业,生物技术和环境管理中的应用来改善地球上的生活质量。
摘要我们表明,对于重力异常的二维理论而言,纠缠的标准概念并未定义,因为它们不接受希尔伯特空间的局部张量分支到局部希尔伯特空间中。定性地,如果有不同数量的状态在两个相反的方向上传播,则模块化流量不能在有限的区域始终如一和单位作用。我们通过将其分解为两个观察来确切化:首先,二维形式的保形场理论在空间上只有在没有异常的情况下,才能在空间上进行一致的量化。第二,局部张力分解始终导致定义一致,统一,能量的边界条件。作为推论,我们建立了对所有二维统一局部量子界理论的尼尔森 - 尼诺亚定理的概括:除非其引力静脉消失,否则在二维中没有连续的量子界面理论。我们还表明,结论可以通过减小的四个非趋势签名来推广到六个维度。我们主张这些点可用于理论上重新解释引力异常量子信息,作为对量子信息定位的基本障碍。
摘要在本文中,我们使用广义Vaidya型度量作为背景来研究K-本质新兴重力的重力下降。我们还分析了该系统的宇宙审查假设。我们表明,新兴的重力度量与新类型的广义VAIDYA指标与无效崩溃的新型类型,并具有K-本质出现的质量函数,在此我们确定了k-本质标量的函数是高级或迟滞时间的函数。这种新型的K-本质新兴的VAIDYA指标使所需的能量条件满足。本地裸露的中心奇异性的存在,奇异的新兴vaidya指标的奇异性的强度和强度是当前工作的有趣结果。