年轻的孤立中子星及其疑似位置是定向搜索连续引力波 (GWs) 的有希望的目标 [1]。即使没有从脉冲星的电磁观测中获得计时信息,这种搜索也可以以合理的计算成本实现有趣的灵敏度 [2]。包含候选非脉冲中子星的年轻超新星遗迹 (SNR) 是此类搜索的自然目标,即使在没有候选中子星的情况下,小型 SNR 或脉冲星风星云也是如此(只要 SNR 不是 Ia 型,即不会留下致密物体)。过去十年,已经发表了许多关于孤立、定位良好的中子星(除已知脉冲星外)的连续引力波的上限。它们使用的数据范围从初始 LIGO 运行到高级 LIGO 的第一次观测运行(O1)和第二次观测运行(O2)。大多数搜索都针对相对年轻的 SNR [3-11]。一些搜索瞄准了银河系中心等有希望的小区域 [4, 8, 11–13]。一项搜索瞄准了附近的球状星团,那里的多体相互作用可能会有效地使一颗老中子星恢复活力,从而产生连续的引力波 [14]。一些搜索使用了较短的相干时间和最初为随机引力波背景开发的快速、计算成本低的方法 [4, 8, 11]。大多数搜索速度较慢但灵敏度更高,使用较长的相干时间和基于匹配滤波和类似技术的针对连续波的专用方法。这里我们展示了对 12 个 SNR 的 O2 数据的首次搜索,使用完全相干的 F 统计量,该统计量是在代码流水线中实现的,该流水线源自首次发布的搜索 [3] 等 [5, 9] 中使用的代码流水线。由于 O2 噪声频谱并不比 O1 低很多,我们通过专注于与年轻脉冲星观测到的低频兼容的低频,加深了这些搜索(相对于 O1 搜索 [9])。这一重点使我们能够增加相干时间,并获得显着的改进
摘要在本文中,我们使用广义Vaidya型度量作为背景来研究K-本质新兴重力的重力下降。我们还分析了该系统的宇宙审查假设。我们表明,新兴的重力度量与新类型的广义VAIDYA指标与无效崩溃的新型类型,并具有K-本质出现的质量函数,在此我们确定了k-本质标量的函数是高级或迟滞时间的函数。这种新型的K-本质新兴的VAIDYA指标使所需的能量条件满足。本地裸露的中心奇异性的存在,奇异的新兴vaidya指标的奇异性的强度和强度是当前工作的有趣结果。
量子力学改变了我们对物理世界的看法,在过去的二十年中,物理系统的量化特征也已成为技术不同分支的资源[1,2]。尤其是,当计量学遇到量子机械时,就可以使用整个新的新特征来提高物理测量的精度,并构想新颖的量子增强方案以表征信号和设备[3-5]。相对论也改变了物理的范例,并发现了相关的技术应用[6]。因此,是否可以共同利用相对论和量子机械性能以提高物理测量的精度。在本文中,我们遵循了这一想法,并证明了范式相对论特征,重力时间扩张确实可能代表了可以与量子叠加一起使用的资源,以证明重力常数的估计或其变化。
过去二十年,凝聚态物理、核物理、引力和量子信息等多个原本毫不相关的学科之间出现了惊人的联系,这得益于实验的进步以及全息对偶带来的强大新理论方法。在这篇非技术性评论中,我们介绍了全息对偶与量子多体动力学相关的一些最新进展。这些包括对没有准粒子的强相关相及其传输特性、量子多体混沌和量子信息的扰乱的洞察。我们还讨论了使用量子信息理解全息对偶本身结构的最新进展,包括对偶的“局部”版本以及具有引力对偶的量子多体态的量子误差校正解释,以及这些概念如何有助于证明黑洞蒸发的幺正性。
摘要:从量子不一致性的角度研究原初引力波的压缩效应。构造了不具有量子不一致性原初引力波的经典态,并与邦奇-戴维斯真空进行比较,证明了原初引力波引起的宇宙微波背景涨落的角功率谱的振荡行为可以作为原初引力波量子不一致性的特征。此外,还讨论了量子退相干对超视界模式下原初引力波的纠缠和量子不一致性的影响。对于具有退相干效应的原初引力波态,我们考察了C. Kiefer 等人引入的退相干条件和关联条件(Class. Quantum Grav. 24 (2007) 1699)。我们表明,退相干条件不足以保证 PGW 的可分离性,而关联条件意味着物质主导时代的 PGW 具有量子不一致性。
量子信息是一个引人入胜的主题,具有彻底改变我们对宇宙的理解的能力,并且已将其作为一种工具来理解在各种不同环境中的相对论现象,例如加速度和黑洞(称为异常和霍金效应)[1,2]。量子纠缠已被用作增强重力波检测器灵敏度的方法。参考文献[3,4]研究了通过收集相互量子相关性并讨论每个光束在干涉仪中传播的方式的差异来消除过滤腔的可行性。参考[5]提出了一种基于量子纠缠的重力波检测的量子速度计测量方案的新实现。除此之外,一些论文原则上研究了受重力波影响的量子特性,包括量子烙印[6],量子时间扩张[7],纠缠收集[8],激发/对单个原子的兴奋/去敏化[9,10]等。在[11]中还研究了重力场对量子纠缠的影响。,但大多数研究都集中在两体纠缠上。在本文中,我们将研究重力波对量子多体态的影响,并讨论实验检测对压力波的可行性。
寻找一种可行的方案来测试引力相互作用的量子力学性质引起了越来越多的关注。到目前为止,引力介导的纠缠产生似乎是潜在实验的关键因素。在最近的一项提案 [D. Carney 等人,PRX Quantum 2,030330 (2021)] 中,将原子干涉仪与低频机械振荡器相结合,提出了一种相干性复兴测试来验证这种纠缠产生。由于只对原子进行测量,因此该协议无需进行相关测量。在这里,我们探索了这种协议的公式,并具体发现,在设想的高热激发操作状态下,没有纠缠概念的半经典模型也会给出相同的实验特征。我们在完全量子力学计算中阐明,纠缠不是相关参数范围内复兴的来源。我们认为,在目前的形式下,建议的测试仅在振荡器几乎处于纯量子态时才有意义,并且在这种情况下,影响太小而无法测量。我们进一步讨论了潜在的开放结局。结果强调了在测试物理系统的量子力学性质时明确考虑量子情况与经典期望的不同之处的重要性和微妙之处。
引力猫态,引力场充当着一个环境,其中宏观物体(类似于薛定谔的猫)以不同引力态的叠加存在。这些状态不仅具有理论意义,而且也为实验探索带来了希望,为研究引力和量子力学的相互作用打开了独特的窗口 [6,7]。从历史上看,围绕与此相关的一个基本问题一直存在讨论:我们如何确认引力是否必须被视为一种量化现象,或“为什么我们需要量化一切,包括引力” [8]?此外,是否存在一种普遍适用的实验方法,可以确定引力是否在量子层面上起作用 [9,10]?根据量子信息论的某些观点,有人认为,能够在两个系统之间产生纠缠的相互作用必然具有量子特性。因此,量子引力的一个重要指标是观察到由引力相互作用引起的大质量态之间的纠缠[11,12]。与目前依赖于检测引力介导的纠缠的测试相反,Lami等人[13]最近提出了一种仅关注相干态的新方法。有趣的是,他们的方法不需要产生广泛离域的运动状态或检测纠缠,因为纠缠不会发生在该过程的任何阶段。因此,近年来,引力猫态的研究引起了相当大的关注[14-17],这受到理论框架和实验技术的进步的刺激。一些研究人员利用引力波探测、量子光学和精密测量技术等工具,提出了各种生成和观察引力猫态的方案。这些努力不仅深化了
当今世界,电力在人类生活中发挥着重要作用,如家庭、工业和制造、医疗、照明、空间技术、空气动力学等。换句话说,没有电,生活就是空虚的。电力可以通过多种方式产生,如水电站、地热电站、太阳能发电厂、风力发电厂、蒸汽发电厂等。印度拥有丰富的可再生能源资源,有潜力产生超过 5000 万亿兆瓦 (MW) 的电力。电力可以通过水电站、地热发电厂、太阳能发电厂、风力发电厂、蒸汽发电厂产生。印度现有的这些不同的发电系统可能目前很丰富。但这些可用资源正在枯竭,尤其是发电资源,如涡轮机用水、风能、地热能、太阳能等。另一方面,即使在世界上,用于发电的投入资源也可能不会永远存在。未来的某一天它们会被耗尽。现在它们并不是全年都有恒定的输出;比如水力发电在冬季水量减少,水容量可能会减少;各个地区的风力都不一样,太阳也可能停止其太阳能发电,另一方面,我们看到的太阳能发电厂依赖于光照条件。类似的情况可能在很长一段时间后才会发生。而且,没有发电厂可以不受限制地在所有地方建设。在没有所有这些资源的地区可能没有电力。除此之外,每个人都知道地球的资源是有限的,总有一天,它们会枯竭。没有人能否认这一事实。更重要的是,该国人口不断增加,加上众多行业使用非常高的电能投入。例如,根据该国概况,现有的发电厂没有足够的能力将生产的电能分散到印度的所有地区。此外,电力分布覆盖的地区已经老化,电力也存在波动。同时,电力传输材料和配电成本非常昂贵,需要复杂的材料安排,而且在传输过程中,由于电线电阻和传输长度而导致的材料浪费,会造成电力损失。本文讨论的另一个主要问题是,发电来源正在失去其容量。特别是大坝的水量正在减少。这导致水力发电厂的发电量下降。我们必须关注的是地球上的可用资源,当我们看着以前发明的发电厂利用地球资源而不考虑人类未来的生活时。
遗传学在恶性肿瘤的发展和进展中起着重要作用。相关基因的识别是一个高维数据处理问题。为了解决维数灾难,提出了一种混合方法,即金字塔引力搜索算法 (PGSA),其中基因数量循环减少。PGSA 由两个元素组成,一个过滤器和一个包装器方法(受引力搜索算法启发),该方法通过循环进行迭代。在每个循环中选定的基因会传递到后续循环以进一步降低维数。PGSA 尝试使用信息量最大的基因来最大化分类准确度,同时减少基因数量。结果报告了针对乳腺癌的多类微阵列基因表达数据集。已经实施了几种特征选择算法以进行公平的比较。PGSA 在准确度方面排名第一(84.5%),有 73 个基因。为了检查所选基因是否对患者的生存和治疗反应有意义,对这些基因进行了蛋白质-蛋白质相互作用网络分析。在检查遗传网络时出现了一个有趣的模式。HSP90AA1、PTK2 和 SRC 基因位列排名最高的瓶颈基因之列,DNA 损伤、细胞粘附和迁移途径在网络中高度丰富。