2 约束哈密顿系统 13 2.1 没有规范对称性的哈密顿系统 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ................................................................................................................................................................................................................. 16 2.2.2 稳定性算法....................................................................................................................................................................................................... 17 2.2.3 规范变换....................................................................................................................................................................................................... 19 2.2.4 场论....................................................................................................................................................................................................... 19 2.2.4 场论....................................................................................................................................................................................................... 19 . ... 24 2.3.3 小偏移:量化 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...
通过数值模型模拟诊断光谱空间中内部重力波-波相互作用的能量传输,该模拟用物理空间中 Garrett-Munk 光谱的实现初始化,并与所谓的散射积分或动力学方程的预测进行比较。对初始化的随机相位取平均,模型中波-波相互作用的能量传输与动力学方程对某些频率和波数范围的预测高度吻合。现在,原则上,通过这种验证,可以使用动力学方程预测的能量传输来设计海洋内部重力波的全球光谱能量预算,其中物理和光谱空间中能量传输的发散平衡了强迫、耗散、波-波相互作用的能量传输或光谱波能量的变化率。首次全球估计显示,在纬度 f 范围内的波浪能量积累确实与频率为 v T 的潮汐波一致,潮汐波向纬度窗口传播,其中 2 ,v T / f ( f ) ,3,正如动力学方程所预测的那样。
摘要。在当前的能源背景下,间歇性和非调度性可再生能源,如风能和太阳能光伏(发电量不一定与需求相对应),需要灵活的解决方案来储存能源。储能系统 (ESS) 能够平衡可变可再生能源 (VRE) 的间歇性和不稳定发电量。ESS 提供辅助服务,例如:电网频率、一次和电压控制。为了实现电力系统控制,ESS 可以在几秒钟内切换到不同的运行模式。很多时候,ESS 会对景观和社会产生环境影响。为了解决这个问题,废弃的地下空间,如已关闭的矿井,可以用作储能厂的地下水库。本文对地下抽水蓄能水电 (UPSH)、压缩空气储能 (CAES) 和废弃矿井中悬挂重物的悬挂重物重力储能 (SWGES) 进行了比较分析。抽水蓄能水电 (PSH) 是最成熟的概念,占全球散装储能容量的 99%。结果表明,在 UPSH 和 CAES 电厂中,储存的能量主要取决于地下储层容量,而在 SWGES 电厂中,储存的能量取决于矿井深度和质量。SWGES 电厂储存的能量(3.81 MWh 循环 -1,可用深度 600 米,假设悬浮重量为 3,000 吨)远低于 UPSH 和 CAES 电厂。
为什么黑洞与量子引力有关?与广义相对论方程的所有其他解一样,它们是先验的完全经典的对象。然而,一个令人惊讶的特征是它们表现出热力学性质。普通热力学定律是许多微观状态集合的宏观、粗粒度描述;例如,使用统计力学,可以从气体动力学理论中推导出这些定律。同样,黑洞热力学定律可以看作是广义相对论提供的低能有效理论中引力的突现特性。了解黑洞热力学如何随着能量的增加而改变,可能会揭示一些关于量子引力基本理论的信息,从而为时空的量子结构提供一个窗口。相反,应该可以从量子引力的基本理论出发,采取一些适当的粗粒度极限,推导出黑洞热力学及其修正。
力方向上的距离。示例:两匹马拉着一辆临时雪橇上的一名男子。男子和雪橇的总质量为 204 公斤,雪橇和地面之间的摩擦力为 700 N。当马拉雪橇时,三条链条中的每一条都具有 396 N 的张力,并且相对于水平方向成 30.0° 的角度,它们将男子拉动了 20.2 米的距离。确定 A) 其中一条链条对雪橇所做的功,B) 其中一条链条对马所做的功,以及 C) 摩擦对雪橇所做的功。
摘要 重力引起的意识丧失 (G-LOC) 是战斗机飞行员面临的主要威胁,可能会导致致命事故。高 +Gz(头到脚方向)加速度力会诱发脑出血,导致周边视力丧失、中央视力丧失(昏厥)和 G-LOC。我们尝试建立一个公式,使用脑氧合血红蛋白 (oxyHb) 值、身高、体重和身体质量指数 (BMI) 来预测 G-LOC。我们分析了 2008 年至 2012 年间测量的 249 名人体离心机受训者的脑氧合血红蛋白值。受训者暴露于两种离心机模式。一种是 4G–15s、5G–10s、6G–8s 和 7G–8s,不穿抗荷服(间隔 60 秒,发作率为 1G/s)。另一组为 8G-15s,起始速率为 6G/s,穿着抗荷服。我们使用近红外光谱仪 (NIRS)(NIRO-150G,日本静冈县滨松光子学株式会社,滨松)测量了受训者的脑氧合血红蛋白值。分析了以下参数。A)基线值为 +Gz 暴露前 30 秒的平均值。B)+Gz 暴露期间氧合血红蛋白的最大值。C)+Gz 暴露期间氧合血红蛋白的最小值。D)氧合血红蛋白从最大值到最小值的变化率(变化率)。使用逻辑回归分析进行统计分析,以建立预测 G-LOC 的公式。受训者的年龄为 24.1 ±1.7(S.D.)(范围,22 ~ 30)
重量和重心的测量对飞机的设计、制造和使用有着十分重要的意义。飞机重量和重心的变化将影响飞机的飞行、机动、起飞和着陆性能,关系到人员安全和飞机的飞行安全,因此准确、快速地测量重量和重心是非常必要的。重量和重心的测量是为了确定飞机的重量和重心,并验证理论上的重量和重心,并且根据具体飞行的要求对飞机的重心进行重新定位[1-2]。在设计和装配阶段,系统调试之前必须进行重量和重心的测量,在维修或改装之前和之后也必须进行这项工作。重量和重心的超限严重偏离将影响飞机的正常飞行,因此重量和重心的测量对于飞机制造非常重要。目前广泛使用的飞机重量及重心测量方法有千斤顶法、称重台法、复合法等。随着现代飞机越来越多地采用新技术、新方法,飞机的系统集成度越来越高,性能越来越先进,现有的测量方法已不能满足飞行安全对高精度、高速度、高可靠性测量的要求。因此有必要对现有的测量技术进行分析和总结,提出新的测量技术。本文在分析现有方法、总结发展趋势的基础上,提出了一种新的柔性测量方法来满足上述需求。