摘要 — 本研究提出了一种简单的加密解决方案,用于保护计算机应用中常用的灰度和彩色数字图像。由于这些图像用途广泛,保护它们对于防止未经授权的访问至关重要。本文的方法使用基本操作来处理图像的二进制矩阵。这些具体操作包括将 8 列矩阵扩展至 64 列,将其重新组织为 64 列,将其分成四个块,并使用秘密索引密钥对列进行混沌处理。这些密钥由四组常见的混沌逻辑参数生成。每组参数执行混沌逻辑映射模型以生成混沌密钥,然后将其转换为索引密钥。该索引密钥在加密过程中对列进行混沌处理,在解密过程中进行反向操作。该加密方法保证了密钥空间的安全性,从而能够抵御黑客攻击。由于解密过程对精确的私钥值敏感,因此加密图像是安全的。私钥通常是混沌逻辑参数,这使得加密具有弹性。该方法非常方便,因为它支持任意大小和类型的图像,而无需修改加密或解密技术。混洗取代了传统数据加密方法中复杂的逻辑过程,简化了加密过程。我们将使用多张照片进行实验,以评估所提出的策略。加密和解密后的照片将被检查,以确保该方法符合加密标准。速度测试还将把所提出的方法与现有的加密方法进行比较,以展示其通过缩短加密和解密时间来加速图片加密的潜力。
摘要 人类神经系统的主要器官是位于头部并被头骨覆盖的大脑。人脑的功能是控制人体的各个部位。它是一种可以协调其他器官并为它们分配职责的附属物。图 1.1 显示了人脑的一般部分,而人脑的主要部分是脑干和大脑。大脑是大脑的最大部分。大脑可以负责情绪。大脑有两个半球,控制身体的另一侧。每个半球都包含四个脑叶。小脑占据小脑旁边的主要部分。近年来,脑肿瘤检测和分割引起了研究领域的兴趣。由于人体体格具有自然的解剖结构,因此识别和分割脑肿瘤的过程是一项非常繁琐且耗时的任务。该项目的主要目标是检测脑肿瘤,本研究提出了一种使用卷积神经网络对脑肿瘤进行分割和识别的计算机化方法。使用文件路径从本地设备读取输入的 MRI 图像并将其转换为灰度图像。使用自适应双边滤波技术对这些图像进行预处理,以消除原始图像中的噪声。对去噪图像应用二值阈值,并应用卷积神经网络分割,这有助于找出 MRI 图像中的肿瘤区域。所提出的模型获得了 84% 的准确率,并产生了令人满意的结果,没有任何错误,而且计算时间要少得多。
近年来,量子图像处理在图像处理领域引起了广泛关注,因为它有机会将海量图像数据放入量子希尔伯特空间。希尔伯特空间或欧几里得空间具有无限维度,可以更快地定位和处理图像数据。此外,多种类型的研究表明,量子过程的计算时间比传统计算机更快。在量子域中编码和压缩图像仍然是一个具有挑战性的问题。从文献调查中,我们提出了一种 DCT-EFRQI(直接余弦变换量子图像的高效灵活表示)算法来有效地表示和压缩灰度图像,从而节省计算时间并最大限度地降低准备的复杂性。这项工作旨在使用 DCT(离散余弦变换)和 EFRQI(量子图像的高效灵活表示)方法在量子计算机中表示和压缩各种灰度图像大小。使用 Quirk 模拟工具设计相应的量子图像电路。由于量子比特数的限制,总共使用 16 个量子比特来表示灰度图像的系数及其位置。其中,8 个量子比特用于映射系数值,其余量子比特用于生成相应系数的 XY 坐标位置。理论分析和实验结果表明,与 DCT-GQIR、DWT-GQIR 和 DWT-EFRQI 相比,所提出的 DCT-EFRQI 方案在 PSNR(峰值信噪比)和比特率方面提供了更好的表示和压缩。
1,2 ece系,Bannari Amman理工学院,Sathyamangalam文章历史:收到:2021年1月11日;修订:2021年2月12日;接受:2021年3月27日;在线发布:2021年5月10日摘要 - 脑肿瘤是人们的主要威胁。 ,但目前,由于许多机器学习技术,它变得更加先进。 磁共振成像是所有图像处理技术中扫描人体并在改善质量图像中清楚地分辨出肿瘤的所有图像处理技术中的最大技术。 MRI的基本原理是根据磁场和人体解剖学的无线电波开发图像。 图像分割的主要区域是医疗图像处理。 MRI图像比CT扫描,X射线等更好的结果。 如今,在大空间和结构变异性中自动肿瘤检测。 最近卷积神经网络在医疗领域和计算机视野中起着重要作用。 其应用之一是识别脑肿瘤。 在这里,预处理技术用于将正常图像转换为灰度值,因为它包含相等的强度,但在MRI中,包括RGB含量。 然后,使用中位数和高通滤波器来消除不需要的噪音,以提高图像质量。 使用小内核进行CNN中更深层次的建筑设计。 最后,评估使用该网络从MRI图像中分割肿瘤的效果,以更好的结果进行评估。 I. 简介1,2 ece系,Bannari Amman理工学院,Sathyamangalam文章历史:收到:2021年1月11日;修订:2021年2月12日;接受:2021年3月27日;在线发布:2021年5月10日摘要 - 脑肿瘤是人们的主要威胁。,但目前,由于许多机器学习技术,它变得更加先进。磁共振成像是所有图像处理技术中扫描人体并在改善质量图像中清楚地分辨出肿瘤的所有图像处理技术中的最大技术。MRI的基本原理是根据磁场和人体解剖学的无线电波开发图像。图像分割的主要区域是医疗图像处理。MRI图像比CT扫描,X射线等更好的结果。如今,在大空间和结构变异性中自动肿瘤检测。 最近卷积神经网络在医疗领域和计算机视野中起着重要作用。 其应用之一是识别脑肿瘤。 在这里,预处理技术用于将正常图像转换为灰度值,因为它包含相等的强度,但在MRI中,包括RGB含量。 然后,使用中位数和高通滤波器来消除不需要的噪音,以提高图像质量。 使用小内核进行CNN中更深层次的建筑设计。 最后,评估使用该网络从MRI图像中分割肿瘤的效果,以更好的结果进行评估。 I. 简介如今,在大空间和结构变异性中自动肿瘤检测。最近卷积神经网络在医疗领域和计算机视野中起着重要作用。其应用之一是识别脑肿瘤。在这里,预处理技术用于将正常图像转换为灰度值,因为它包含相等的强度,但在MRI中,包括RGB含量。然后,使用中位数和高通滤波器来消除不需要的噪音,以提高图像质量。使用小内核进行CNN中更深层次的建筑设计。最后,评估使用该网络从MRI图像中分割肿瘤的效果,以更好的结果进行评估。I.简介
摘要 量子计算最有前途的应用之一是处理图像等图形数据。在这里,我们研究了基于交换测试实现量子模式识别协议的可能性,并使用 IBMQ 噪声中型量子 (NISQ) 设备来验证这个想法。我们发现,使用双量子比特协议,交换测试可以有效地以良好的保真度检测两个模式之间的相似性,尽管对于三个或更多量子比特,真实设备中的噪声会变得有害。为了减轻这种噪声影响,我们采用破坏性交换测试,这显示出三量子比特状态的性能有所提高。由于云对较大 IBMQ 处理器的访问有限,我们采用分段方法将破坏性交换测试应用于高维图像。在这种情况下,我们定义了一个平均重叠度量,当在真实 IBMQ 处理器上运行时,它可以忠实地区分两个非常不同或非常相似的模式。作为测试图像,我们使用具有简单模式的二进制图像、灰度 MNIST 数字和时尚 MNIST 图像,以及从磁共振成像 (MRI) 获得的人体血管的二进制图像。我们还介绍了一种利用金刚石中的氮空位 (NV) 中心进行破坏性交换测试的实验装置。我们的实验数据显示单量子比特状态具有高保真度。最后,我们提出了一种受量子联想记忆启发的协议,其工作方式类似于监督学习,使用破坏性交换测试进行量子模式识别。
简介 CNN 或卷积神经网络是深度学习的一个子集。深度学习是机器学习和人工智能的更广泛的集合。深度学习是一种从数据集中进行复杂学习的方法,并根据数据集创建模型(Patel 等人,2018 年)。深度学习可以是一种监督学习的方式,也可以是一种无监督学习的方式。通常,它有一个现实生活中的问题的解决方案,学习结果可以是监督的、半监督的或无监督的,首先给出一个数据集,然后首先要对数据进行操作,必须清理数据,因为在现实生活中的数据模型中有很多数据缺失,无法用缺失数据创建模型,为此,必须准备数据以供算法运行,在应用算法之前,必须仔细清理数据并了解实际情况,然后才能应用合适的算法,应用算法后,人们将得到基于人工神经网络的理想数据表示(Mongaet al. 2020)。人工神经网络 (ANN) 的名称听起来可能与生物神经元相似,因为其结构与位于大脑内的神经元非常相似,但它与生物神经元有一些关键区别,例如人工神经网络是静态的,而另一个是活体生物体,因此本质上是动态的,另一个是人工神经网络是符号的,生物神经网络是模拟的。深度学习具有多种架构,这种多种架构在许多领域都有多种应用,例如“自然语言处理 (NLP)、医学图像分析、药物设计、生物信息学、语音识别、深度神经网络、卷积神经网络、医学视觉、计算机视觉”。转换或卷积神经网络处理图像恢复。卷积神经网络在“图像分割、裁剪图像分析、脑机接口、图像分类”等领域有着广泛的应用。受深度学习技术在图像处理领域的最新成功的启发,我们利用样本图像集使用反向传播对前馈深度卷积神经网络 (CNN) 与 Inception-ResnetV2 进行训练,以识别 RGB 和灰度值中的模式。然后,给定测试图像的灰度 L 通道,使用训练后的神经网络预测两个 a* 和 b* 色度通道。CNN 在融合层的帮助下生动地为图像着色,同时考虑了局部特征和全局特征。采用两个目标函数,即均方误差 (MSE) 和峰值信噪比 (PSNR),对估计的彩色图像与其基本事实之间的质量进行客观评估。该模型在我们自己创建的数据集上进行训练,该数据集包含 1.2 K 张尼泊尔古老而古老的照片,每张的分辨率为 256×256。损失即 MSE、PSNR,模型的自然度和准确率分别为 6.08%、34.65 dB 和 75.23%。除了展示训练结果之外,还通过用户研究来评估生成图像的公众接受度或主观验证,其中模型在评估彩色结果时显示出 41.71% 的自然度。随着计算机图形渲染和图像编辑技术的巨大进步,计算机生成的假图像通常不能反映现实情况,现在可以很容易地欺骗人类视觉系统的检查。在这项工作中,我们提出了一个基于卷积神经网络 (CNN) 的模型,通过通道和像素相关性来区分计算机生成的 (CG) 图像和自然图像 (NI)。所提出的 CNN 架构的关键组件是一个自编码模块,它将彩色图像作为输入来提取
在人工智能中的图像处理和技术方面的进步使计算机可以看到和学习。本文介绍了一项技术,该技术已利用Mobilenetv2深卷积神经网络体系结构来自动识别和诊断图像中的植物疾病。植物疾病的识别和分类现在仅由人类专家 - 杂种延伸代理人和农民,昂贵的劳动力,容易犯错。这项研究依靠数据集收集作为分类和识别植物疾病的技术。这是一个多步骤过程,涉及有关原始集合的预处理数据,叶片的面罩绿色区域,删除绿色部分,转换为灰度,然后获得一些特征,选择并在疾病管理方面进行分类。考虑了两种不同类型的植物,即玉米和马铃薯,以显示拟议模型结果的有效性。混淆矩阵和分类性能报告用于评估系统。土豆和玉米的数据集分别包括6228和6878张叶子的图像。精确,召回和F1得分分别记录为95.15%,94.76%和94.93%,分别记录为马铃薯和玉米数据集的累积性能。这转化为在为这些农作物挑选大多数疾病的抵抗力,使其成为可以在农业疾病检测中信心使用的资源。Mobilenetv2模型在两种农作物中都表现良好,尤其是对于马铃薯早期的疫病和玉米共同生锈。在识别健康的马铃薯叶子方面的性能较低表明,健康和患病的叶子的特征空间可能会重叠。Mobilenetv2模型通常在检测大多数影响马铃薯叶和玉米叶子的疾病时具有强大的能力,但是需要将某些特定区域作为目标以进一步增强。
帕金森病(PD)是最常见的神经退行性疾病之一(1),近年来发病率稳步上升。在 PD 的早期阶段,症状通常非常轻微,医生很难做出明确的诊断(2)。在前驱期,PD 患者可能表现出非运动症状,例如嗅觉减退和认知障碍(3)。随着病情的进展,患者可能会出现震颤等经典的运动症状。运动症状的出现通常表明疾病已进入中期或晚期,诊断和治疗的最佳窗口期已过。与震颤等可见症状不同,认知能力下降是一个渐进的过程,其根本原因和神经解剖学基础仍未完全了解(4)。目前,PD 没有有效的治疗方法,可用的治疗主要集中在症状管理上(5)。因此,早期诊断和发现 PD 至关重要(6)。有效的早期诊断可以及时发现健康问题并实施干预措施,以最大限度地降低与疾病相关的严重健康风险(1,2)。在早期阶段,准确及时地识别帕金森病是一项重大挑战(7)。目前,帕金森病的诊断主要依赖于临床评分量表和临床医生的专业知识。这些诊断方法不完善、耗时且劳动密集,缺乏标准化和有效的定量指标。帕金森病患者的常规非侵入性神经影像学检查,如磁共振成像(MRI),包含大量潜在有价值的信息,包括灰度范围、强度和脑组织特征的细胞内变化。这些细节可以帮助更好地了解帕金森病患者的大脑改变。然而,仅凭放射科医生的临床专业知识识别这些信息可能具有挑战性(8)。人们投入了大量研究来创新帕金森病诊断方法(9,10),旨在提高疾病检测能力。帕金森病进展
摘要:随着时间的流逝,已为模式分类生成了无数的应用。几个案例研究包括参数分类器,例如多层感知器(MLP)分类器,这是当今使用最广泛的分类器之一。其他人使用非参数分类器,支持向量机(SVM),K-Nearest邻居(K-NN),幼稚的贝叶斯(NB),Adaboost和Random Forest(RF)。但是,仍然几乎没有针对人工智能(AI)的新趋势的工作,该趋势被称为可解释的人工智能(X-AI)。这种新趋势旨在使机器学习(ML)算法越来越简单且易于理解用户。因此,在这项工作中,在这项工作中,作者基于新型极简主义机器学习(MML)范式的实现以及更高的相关性属性选择算法,开发了一种新的模式分类方法,我们称之为DMeans。我们检查并比较了该方法的性能与MLP,NB,KNN,SVM,ADABOOST和RF分类器,以执行计算机断层扫描(CT)脑图像的分类任务。这些灰度图像的面积为128×128像素,并且数据集中有两个类别可用:CT无出血和CT,具有室内出血(IVH)的CT,使用剩余的交叉验证方法对它们进行了分类。大多数通过一对一的交叉验证测试的模型的精度在50%至75%之间,而灵敏度和灵敏度在58%至86%之间。使用我们的方法进行的实验与观察到的最佳分类器相匹配,其精度为86.50%,并且它们的表现优于特定的所有最先进的算法,而91.60%的算法的表现。这种性能是通过简单且实用的方法齐头并进的,这些方法与这种易于解释的算法的趋势并驾齐驱。
人工智能技术是在计算机应用技术基础上派生和发展起来的一门科学和技术。图像识别是一种特殊的图像处理步骤,起着重要作用。只有在图像识别之后,才能进入图像分析和理解阶段。随着各种计算机技术的发展,图像逐渐成为并已成为人们重要的信息来源。计算机人工智能的使用越来越广泛,因此,了解其应用和相关研究更有利于为我们指明研究和学习的方向。本文旨在探讨人工智能识别技术的产生和发展,分析各类人工智能识别技术的应用瓶颈,以增加我们对人工智能技术的认识,为相关领域的研究提供参考。本文简单介绍了人工智能技术的类型及其新的发展趋势,并结合公共设施的具体图像,在传统方法的基础上改进了不同的计算机人工智能识别方法对图像识别处理的应用,并通过相应的仿真软件对处理和识别方法进行了分析比较,主要应用了两种方法,图像处理的识别错误率小于0.5;改进计算机人工智能识别技术对于分析其在图像处理中的应用有一定的帮助。预处理过程一般包括图像数字化、灰度化、二值化、去噪、字符分割等。在图像识别方面,算法主要有统计识别、语法识别、模板匹配等。近年来,随着神经网络和支持向量机技术的发展,图像识别技术有了新的更高的发展水平。
