b'量子图像\xef\xac\x81滤波是对经典图像\xef\xac\x81滤波算法的扩展,主要研究基于量子特性的图像\xef\xac\x81滤波模型。现有的量子图像\xef\xac\x81滤波侧重于噪声检测和噪声抑制,忽略了\xef\xac\x80滤波对图像边界的影响。本文提出了一种新的量子图像\xef\xac\x81滤波算法,实现了K近邻均值\xef\xac\x81滤波任务,在抑制噪声的同时,可以达到边界保持的目的。主要工作包括:提出一种新的用于计算两个非负整数之差绝对值的量子计算模块,从而构建了距离计算模块的量子电路,用于计算邻域像素与中心像素的灰度距离;改进现有的量子排序模块,以距离作为排序条件对邻域像素进行排序,从而构建了K近邻提取模块的量子电路;设计了K近邻均值计算模块的量子电路,用于计算选取的邻域像素的灰度均值;\xef\xac\x81最后,构建了所提量子图像\xef\xac\x81过滤算法的完整量子电路,并进行了图像去噪仿真实验。相关实验指标表明,量子图像K近邻均值\xef\xac\x81滤波算法对图像噪声抑制具有与经典K近邻均值\xef\xac\x80滤波算法相同的效果,但该方法的时间复杂度由经典算法的O 2 2 n降低为O n 2 + q 2 。
摘要 — 医学图像处理极大地改变了医疗保健的格局,特别是在各种疾病的诊断和治疗方面。胃肠道 (GI) 癌症已成为一个快速增长的问题,估计每年报告的新病例有 500 万例。为了达到这种精度,医疗保健专业人员现在利用尖端的磁共振成像 (MRI) 模式,即 MR-Linacs,它可以提供肿瘤位置的每日视图。然而,这一过程中的一个瓶颈出现在从获得的医学图像中手动分割处于危险中的健康器官(如胃和肠)的过程中。这项由放射科医生执行的任务非常耗时,可能会大大延长治疗时间,从而加剧患者的痛苦。因此,胃肠道分割的自动化可以无缝地帮助肿瘤学家。我们的研究提出了一种自动分割胃肠道的模型。本研究提出了一个 U-Net 模型,可以从 MRI 扫描中分割胃和肠。该数据集来自威斯康星大学麦迪逊分校卡博内癌症中心,包含用于训练注释的 RLE 编码掩码以及 16 位灰度 PNG 图像。每个病例包含多个扫描切片,按时间或整个病例分割。我们的方法使用了 U-Net 上的各种损失函数组合来提高胃肠道自动分割的准确性和效率。与其他损失函数相比,我们的模型使用 Dice+BCE 损失函数实现了较高的准确性。在训练数据集上,采用 Dice+BCE 损失函数的 U-Net 模型获得了最高的骰子分数 0.9082 和 IOU 分数 0.8594。在验证数据集上,该模型的骰子分数为 0.8974,交并比 (IoU) 分数为 0.8181。这项研究有助于解决与手动胃肠道分割相关的挑战,通过使用深度学习技术进行自动分割提供了可行的解决方案。关键词 — 磁共振成像 (MRI)、组合损失函数、U-Net、威斯康星大学麦迪逊分校 Carbone 癌症中心、胃肠道分割
数字图像处理涉及使用数字计算机操纵数字图像。这是系统和信号的区域,特别强调图片。计算机的开发是DIP的主要目标。系统具有处理图像的能力。由许多图片组成的图像称为数字图像。像素是元素的另一个名称,每个元素的强度或灰色水平都有有限的离散数量表示。这些是二维函数的输出,其空间坐标为输入,由x和y轴上的字母x和y表示。在开始图像处理之前,请先了解需要什么图像。图片的高度,广度和其他维度是其表示形式。此像素是图片上的一个位置,可获得一定的颜色,不透明度和阴影。在灰度图像中,像素是一个具有0到255之间的整数,其中0代表总黑度,而255代表整个白度。红色,绿色和蓝色的强度由构成像素的三个整数表示,该整数范围从0到255 [1]。数字图像处理是使用计算机算法处理数字图像的过程。与模拟图像处理相比,数字图像处理提供了许多好处。它可以防止处理过程中的噪声积累和信号失真等问题,并使更多的算法应用于输入数据。机器学习的领域相对较新。多维系统可用于描述数字图像处理,因为图像是在二维中定义的,即使不是更多[4]。随着该领域的研究变得更加深入,机器学习的使用范围正在增长。然而,随着科学和技术的提高,图像已成为传输信息的重要手段,并且图像处理技术同样正在迅速扩展。解释了每个图像处理技术的局限性,以及当今最广泛使用的图像处理系统的详细比较。
1.引言多光谱图像通常提供互补信息,如可见光波段图像和红外图像(近红外或长波红外)。有强有力的证据表明,融合的多光谱图像提高了解释的可靠性(Rogers & Wood,1990;Essock 等人,2001);而彩色多光谱图像则提高了观察者的表现和反应时间(Toet 等人,1997;Varga,1999;Waxman 等人,1996)。计算机可以自动分析灰度融合图像(用于目标识别);而彩色图像则易于人类用户解释(用于视觉分析)。想象一下,夜间导航任务可以由配备多传感器成像系统的飞机执行。分析组合或合成的多传感器数据将比同时监测多光谱图像(如可见光波段图像(例如,图像增强,ll)、近红外(NlR)图像和红外(lR)图像)更方便、更有效。在本章中,我们将讨论如何使用图像融合和夜视彩色化技术合成多传感器数据,以提高多传感器图像的有效性和实用性。预计这种图像合成方法的成功应用将提高遥感、夜间导航、目标检测和态势感知的性能。这种图像合成方法涉及两种主要技术,即图像融合和夜视彩色化,分别在下面进行回顾。图像融合通过整合互补数据来组合多源图像,以增强各个源图像中明显的信息,并提高解释的可靠性。这样可以得到更准确的数据(Keys et al.,1990)并提高实用性(Rogers & Wood,1990;Essock et al.,1999)。此外,据报道,融合数据提供了更为稳健的操作性能,例如增加了置信度、减少了歧义性、提高了可靠性和改进了分类(Rogers & Wood,1990;Essock et al.,2001)。图像融合的一般框架可以在参考文献(Pohl & Genderen,1998)中找到。在本章中,我们的讨论重点是像素级图像融合。对融合图像质量的定量评估对于客观比较各个融合算法非常重要,它可以测量有用信息的数量和融合图像中引入的伪影数量。
摘要 - 本研究提出了一个强大的脑肿瘤分类框架,首先是对 233 名患者的细致数据整理。该数据集包含各种 T1 加权对比增强图像,涵盖脑膜瘤、神经胶质瘤和垂体瘤类型。采用严格的组织、预处理和增强技术来优化模型训练。所提出的自适应模型采用了一种尖端算法,利用了自适应对比度限制直方图均衡化 (CLAHE) 和自适应空间注意。CLAHE 通过根据每个区域的独特特征调整对比度来增强灰度图像。通过注意层实现的自适应空间注意动态地为空间位置分配权重,从而增强对关键大脑区域的敏感性。该模型架构集成了迁移学习模型,包括 DenseNet169、DenseNet201、ResNet152 和 InceptionResNetV2,从而提高了其稳健性。 DenseNet169 充当特征提取器,通过预训练权重捕获分层特征。批量归一化、dropout、层归一化和自适应学习率策略等组件进一步丰富了模型的适应性,减轻了过度拟合并在训练期间动态调整学习率。技术细节(包括使用 Adam 优化器和 softmax 激活函数)强调了模型的优化和多类分类能力。所提出的模型融合了迁移学习和自适应机制,成为医学成像中脑肿瘤检测和分类的有力工具。它对脑肿瘤图像的细致理解,通过自适应注意力机制的促进,使其成为神经成像计算机辅助诊断的一项有希望的进步。该模型利用具有自适应机制的 DenseNet201,超越了以前的方法,实现了 94.85% 的准确率、95.16% 的精确率和 94.60% 的召回率,展示了其在具有挑战性的医学图像分析领域提高准确率和泛化的潜力。关键词:NeuroInsight、脑肿瘤分类、医学影像、自适应深度学习、自适应框架。1. 简介通过整合最先进的技术,特别是在深度学习领域,医学诊断领域经历了前所未有的进步。这一进步的一个显著例子是使用自适应深度学习进行脑肿瘤分期分类,这是一种新颖的方法,它不仅利用了深度学习的能力,而且还能动态适应脑肿瘤分期固有的复杂性,在诊断中呈现出更高的精确度和个性化水平。在医疗保健领域,脑肿瘤因其表现形式多样、严重程度各异而成为一项艰巨的挑战。传统的肿瘤分类方法经常难以准确描述肿瘤分期的细微细节。在此背景下引入自适应深度学习标志着一种范式转变,它赋予诊断过程一种自学习机制,该机制会随着遇到的每个数据集不断发展和完善自身[1] – [4]。这种开创性方法的基础要素是一种先进的深度学习算法,其特点是动态和自适应性。自适应深度学习方法与典型的深度学习模型不同,它不断修改其参数以响应输入数据的独特特征,而不是依赖于固定的、预定的架构。这种自适应能力确保了对与脑肿瘤分期相关的复杂性的更细致入微和针对具体情况的理解[5] – [7]。
计算机类型 - 计算机基础知识此集合包括15个交互式工作表,旨在帮助学生了解计算机零件及其功能。资源涵盖了与计算机硬件有关的各种主题,包括基本组件,例如主板,CPU,内存,输入设备和输出设备。学生将能够识别不同的计算机零件,了解其功能并认识到他们的使用方式。计算机的五个基本部分是主板,中央处理单元(CPU),内存,输入设备和输出设备。主板充当所有电子组件的通信中心,连接CPU,内存,存储,声卡,网卡,图形卡,输入设备和输出设备。没有它,这些组件将无法交互。CPU是计算机的大脑,执行计算机程序并执行数学和逻辑计算。它执行三步周期:获取,解码和执行。现代CPU由多个处理核心组成,可以同时执行许多指令。这些互动工作表适合不同年龄和英语水平的学生。它们可以用作课堂活动或家庭作业,以帮助学生发展计算机硬件的知识,并对使用计算机更有信心。工作表示例:1。计算机类型及其零件多项选择问题2。基本的计算机硬件和软件级别3。计算机基础知识,使用键盘光标4。第一章计算机简介5。模块1讲义计算机基础计算机单击弹出图标或打印图标以打印或下载您所选的工作表。工作表将在新窗口中打开,您可以在其中使用浏览器文档读取器选项进行和下载或打印。安装了风扇和散热器以防止过热,CPU包括算术逻辑单元(ALU)和控制单元(CU)。ALU处理执行指令的基本算术,逻辑操作和决策。同时,CU指导所有CPU操作,以有效的方式从内存中检索指令,并与Alu,内存和输入/输出设备进行通信,以确保基于处理器命令的正确响应。有两种类型的内存:主要和辅助存储。主内存由CPU缓存和随机访问存储器(RAM)组成,可快速访问用于计算的数据。RAM在CPU处理它们时暂时存储数据和说明。辅助存储是计算机的永久内存,即使在关闭后,数据仍保留。这种类型的存储包括硬盘驱动器(HDD)和固态驱动器(SSD)。输入设备是为CPU提供信息的重要组件,例如鼠标,键盘,麦克风,扫描仪,操纵杆,相机,轻笔和图形平板电脑。输出设备在用户可以理解的表单中提供了来自CPU的最终信息,包括监视器,耳机,扬声器,打印机和投影仪。一旦满足,他们就会使用胶水或粘合剂将标签连接到空白空间,从而确定任务。工作表为学生提供了一种交互式方式,可以通过标记计算机系统的灰度插图来熟悉计算机组件。学生将提供的标签(例如,“ CPU”,“键盘”,“ Monitor”)删除,并将其正确粘贴到图表上,以识别每个组件在系统中的位置和作用。要完成此活动,学生需要在图像中找到相应的组件,并与标签匹配,以确保准确的对齐。主要目标是通过吸引触觉和视觉学习方式来提供对计算机硬件的基本理解,从而改善信息的保留。这项动手介绍的计算机技术介绍会揭开常见的硬件组件,最终帮助学生自信地识别和命名基本零件,为信息技术进一步探索奠定了坚实的基础。(注意:我使用“写为非母语说话者(NNES)”重写方法
