摘要Moiré超级晶格是通过精确堆叠范德华(VDW)层设计的,对探索密切相关的1-4和拓扑现象的巨大承诺具有巨大的希望。但是,这些应用已通过常见的制备方法阻止了:苏格兰胶带去角质单层的撕裂7。它具有低效率和可重复性8,以及扭曲角度不均匀性,界面污染9,微米尺寸8的挑战,以及在升高温度下脱离twist的趋势10。在这里,我们报告了一种有效的策略,可以构建具有高产量吞吐量,接近统一的收益率,原始接口,精确控制的扭曲角度和宏观尺度(至百万计)具有增强的热稳定性的高度一致的VDWMoiré结构。我们进一步证明了各种VDW材料的多功能性,包括过渡金属二甲化物,石墨烯和HBN。Moiré结构的膨胀尺寸和高质量的大小和高分辨率映射可将相互空间回折的晶格和具有低能电子衍射(LEED)和角度分辨光发射光谱光谱光谱(ARPES)的Moiré迷你带结构进行高分辨率映射。该技术将在基本研究和互惠设备的大规模生产中都有广泛的应用。主要的莫伊尔超晶格是由两个晶格晶格平面之间的界面干扰引起的,这些晶格晶格平面与晶格常数和/或对齐角不同。具有可调的带填充和掺杂条件,Moiré超级晶格成为研究电子11,Ickitons 12,Solitons 13和拓扑带结构的集体行为的多功能平台。6,14在特定的扭曲角度(即范德华(VDW)双层界面的魔法角度),这些超级峰值大大降低了电子动能,从而使库仑相互作用占主导地位,从而促进了强电子相关性,从而导致了FERMI水平附近的平坦电子带。15,16除了双层外,最近的实验发展正在探索混合尺寸系统中的Moiré系统,具有更健壮的超导性和更丰富的兴奋性物理学16-19。例如,为扭曲的石墨烯/石墨结构展示了魔术角的Van Hove奇异性。20在石墨烯/石墨系统上的最新传输测量图说明了单个准二维杂交结构的形成,这是通过栅极可调的Moiré电位和石墨表面状态组合的21,22,其中散装晶体的性质被超级晶体势能调整为在界面处的超级乳势。
人工智能背景下的意识本质:重新定义人与技术的关系 Izuchukwu Kizito Okoli* 和 Osita Gregory Nnajiofor* https://dx.doi.org/10.4314/ujah.v25i1.1 摘要 人工智能 (AI) 背景下的意识本质提出了一个需要分析和进一步探索的问题。本研究旨在通过研究意识与 AI 的交集(包括形而上学含义和考虑)来重新定义人与技术的关系。主要目标是在 AI 的背景下定义意识,评估 AI 表现出意识的潜力,研究对人类体验的形而上学含义,并探索伦理层面。研究结果表明,意识涉及自我意识、感知、意向性和主观体验。虽然 AI 可以实现高级认知能力,但高阶意识的存在仍然不确定,这引发了关于主观意识本质的形而上学问题。意识难题凸显了连接物理过程和主观体验的挑战,强调了形而上学考虑的必要性。本文还探讨了人工智能集成的伦理影响及其对人类体验的影响。建议包括进一步研究人工智能中的意识、
作为Astrivax的CBO,他将领导公司的业务发展,包括合作伙伴关系,合作和非稀释资金,以推动管道前进并为未来的资助回合创造价值。
我是耶鲁大学化学系的博士生,也是美国国家科学基金会的研究员。我的研究涉及机器学习方法在药物发现中的开发和应用。我创建了 HAC-Net,这是目前最先进的预测蛋白质-配体结合亲和力的机器学习模型。我开源了所有代码,创建了一个 Python 包和笔记本以及相应的演示视频,并发表了一篇论文,以便更广泛的科学界可以轻松使用此工具。尽管该模型是最近才开发的,但据报道,它有助于识别一种用于治疗耐药性葡萄球菌感染的潜在抗毒力药物。不久之后,我创建了 ChemSpaceAL,这是第一种针对特定蛋白质靶标微调分子生成模型的主动学习方法,特别适用于创建蛋白质靶标特异性分子库以用于药物发现中的虚拟筛选。最近,我创建了 CardioGenAI,这是一个基于机器学习的框架,用于重新设计开发中和上市的药物,以降低心脏毒性,同时保留其药理活性。该框架结合了新颖的最先进的判别模型,用于预测 hERG、Na V 1.5 和 Ca V 1.2 通道活性,这些模型也可以独立作为早期虚拟筛选流程的有效组成部分。此外,我还开发了一种描述蛋白质内信息传递的方法,即静电耦合在基于二级结构元素的网络中传播,这种方法为了解 CRISPR-Cas9、咪唑甘油磷酸合酶和 D-多巴色素互变异构酶等多种重要生物系统的变构机制提供了宝贵的见解。此外,我还为基于量子计算的小分子研究方法的开发做出了贡献,并在一家世界知名的科学软件公司开发了用于 PROTAC 筛选的软件。我在顶级学术期刊上发表了多篇论文,在多个会议上展示了我的工作,创建了多个 Python 包,与世界各地的实验室建立了各种合作关系,并在耶鲁大学成立了生物物理学会分会。出于这些原因,我获得了多个极负盛名的奖项,并多次出现在耶鲁新闻中。教育
经验 2023 年 12 月 – 至今:美国陆军工程兵团水文工程中心水文与统计部主任,加利福尼亚州戴维斯。 2017 年 2 月 – 2023 年 12 月:土木工程师(水利);美国陆军工程兵团水文工程中心,加利福尼亚州戴维斯;水文与统计部。统计方法、水文气象学和水文建模。HEC-HMS 团队负责人。 2022 年 10 月 – 2023 年 12 月:美国陆军工程兵团水文工程中心水文与统计部主任,加利福尼亚州戴维斯(发展任务)。
我是Grambling社区的产物,并在GSU校园中长大。我的教育旅程始于GSU,从GSU早期育儿中心到大学的幼儿园。在Grambling长大时,当Grambling镇成为Grambling市时,我在那里,这是城市与大学之间的一项综合努力。我不仅知道并欣赏GSU的历史,而且我也是那个历史的一部分。我在拍摄Grambling的White Tiger时就在那儿,当GSU乐队成为“世界著名”时,在日本大阪演奏。我还参加了校园的夏季活动,包括国家青年体育计划(NYSP)和高能力。与GSU学生运动员互动GSU教师为我成为院士,竞争对手和领导者提供了基础。我是新的洛矶山谷浸信会教堂的成员,并与许多GSU学生,教职员工,员工,领导者和传奇人物一起崇拜。这些是我将与学生建立关系的类型。
4。在2023年9月7日申请的信托宣布,即接受各种形式的侵入性程序(包括机械通气,高流量氧疗法,线路通道和CPR)并不符合IG的最大利益。在确定申请之前,在这些程序过程中,在IG的情况下恶化后,这些侵入性程序实际上是在实施的。由于IG的介绍中的这种恶化,该信托基金于2023年9月27日修改了其申请,寻求授权以删除重症监护。关于信托的案件,没有康复的前景,预期寿命非常有限,她接受的多种治疗方法使她造成了很高的痛苦和痛苦,并且与周围世界的IG没有明显的生活质量或互动。
AER 使用先进的控制系统(高分辨率数据,秒到毫秒的分辨率)、计量数据(30 分钟间隔)和定期的现场检查、测量和测试不断监测微电网的性能。这包括(但不限于)发电输出、控制系统响应时间、发电性能、限电效率、设备级性能、电能质量等。尽管一路上遇到了非常具有挑战性的情况和障碍——例如热带气旋 Seroja、COVID 疫情、电网中断以及主要 EPC 承包商留下的交付不良和遗留缺陷,但 Port Gregory 现在
小草原松鸡 ( Tympanuchus pallidicinctus; LEPC) 是北美草原松鸡的标志性物种,以其华丽而壮观的繁殖季节展示而闻名。不幸的是,该物种在其大部分历史分布区内都已消失,当代种群数量也急剧下降,这主要是由于气候和人为因素造成的。这些下降导致美国鱼类和野生动物管理局于 2022 年决定根据 1973 年《濒危物种法》将两个不同的种群群体 (DPS;即北部和南部 DPS) 确定并列为受威胁或濒危物种。在此,我们描述了一个带注释的参考基因组,该基因组是从南部 DPS 采集的 LEPC 样本生成的。我们选择了南部 DPS 的代表,因为北部 DPS 存在基因渗入的可能性,那里的一些种群与大草原松鸡 ( Tympanuchus cupido ) 杂交。这个新的 LEPC 参考组装体由 206 个支架折叠、45 Mb 的 N50 和 15,563 个预测的蛋白质编码基因组成。我们通过估计代表性 LEPC 和相关物种的全基因组杂合性来证明这个新基因组组装体的实用性。LEPC 样本中的杂合性为 0.0024,接近相关物种范围(0.0003–0.0050)的中间值。总体而言,这个新的组装体提供了宝贵的资源,将增强草原松鸡的进化和保护遗传学研究。