1. 增强而非替代 人工智能应被用作增强人类创造力和生产力的工具,而不是替代我们创意团队的艺术视野或工艺。我们相信人类思想和智慧的力量,人工智能应该增强而不是削弱这种力量。 2. 透明度和道德使用 在生产过程中使用人工智能的任何行为都必须透明,特别是当它有可能影响最终产品的真实性或原创性时。当在创作过程中使用人工智能工具时,我们会坦诚地告知客户和合作者。 3. 保护知识产权和创作完整性 使用人工智能时应尊重知识产权的所有权,包括我们自己的和第三方的知识产权。人工智能生成的内容不得侵犯受版权保护的材料,并且必须严格遵守许可法和协议。
2 Public Works Department, Faculty of Engineering, Cairo University, Giza12613, Egypt amr-m.eldemiry@polyu.edu.hk , muhammad.muddassir@polyu.edu.hk , tarek.zayed@polyu.edu.hk Abstract – In this paper, we propose a ground mobile robot that can perform both surface mapping and subsurface mapping using三维激光雷达同时定位和映射系统(3D激光雷达大满贯系统)和地面穿透雷达(GPR)。机器人由配备3D激光雷达传感器的移动平台和安装在固定机箱上的GPR天线组成。机器人可以自主浏览环境并从表面和地下收集数据。表面映射是通过使用±3 cm范围精度的3D激光镜传感器来观察地形的点云,然后对其进行处理以生成3D表面图。地下映射是通过使用GPR天线将电磁脉冲发射到土壤中并接收反射的,然后对其进行处理以生成3D地下图。然后,我们可以融合表面和地下图以获得地形的全面表示。我们在现实世界中(例如桥梁)演示了机器人的性能。我们表明,我们的机器人可以在表面映射任务和GPR数据采集中实现高精度和效率。
鉴于生物多样性和对生态系统的了解,采样在海洋调查中变得越来越重要。随着 GIS 平台的采用,可以在底栖和远洋环境中查询样本的相关性,从而最大限度地提高科学家对海洋的了解。因此,仔细分析、存储和解释对于保持随后的数据库达到高标准至关重要。样本描述很容易受到人为偏见的影响,对沙子和淤泥之间沙粒大小的错误判断会影响海洋建模的输出,并可能导致遗漏受气候变化严重影响的区域。因此,我们试图在本文档中预先消除数据收集过程中可能存在的任何歧义或分歧。
海军优势 使用光纤 DTS 技术可为海军带来多种潜在优势。首先,它是唯一能够高分辨率识别大面积渗漏的技术。这可验证并改进地下水和污染物运输模型。它可精确定位值得关注的区域并排除渗漏程度极低或没有渗漏的区域。例如,最近一项 50 英亩的 DTS 研究发现,渗漏发生在不到 5% 的场地面积内。这种高分辨率数据可提高后续调查的成本效益,并让监管机构更加确信该场地的特征已得到充分描述。
摘要:花生(Arachis hypogaea L.)是一种全球重要的油籽和豆科粮食作物。然而,最常见的西班牙束状花生品种缺乏鲜种子休眠(FSD),这对花生的产量和质量造成了重大障碍。鉴于其经济意义,目前正在研究模型系统中导致 FSD 的机制和因素,这对花生栽培具有重要意义。最近的评论强调了在揭示遗传控制、分子机制以及影响不同植物物种发芽和休眠的生理和环境因素方面取得的显著进展。在此背景下,我们研究了有关花生 FSD 的最新研究成果,重点关注与 FSD 相关的遗传因素。此外,我们还探讨了旨在培育优良基因型以加强花生改良的尝试。
混凝土基础支撑着这座砖石饰面建筑。该建筑尺寸为 13 8 x 81 英尺,建于 1968 年,最初用作辐射应用实验室。该建筑朝向西侧。该建筑的大部分都是单层高,但北立面后方有一个两层高的机械部分。外墙使用混凝土作为装饰,包括左侧覆盖面板的部分,以及右侧三扇窗户周围的细节。窗户也有一个连续的混凝土窗台。双扇铝框门也饰有混凝土细节。三扇采光窗环绕右侧立面,双扇门位于这面墙的中央。左立面包含一个开口;一扇通往建筑物两层机械部分的高架门。该建筑有一个平屋顶,带有混凝土护墙。后立面以带有托架盖的瓦片烟囱为主。烟囱是
简介 — 自旋玻璃是统计物理学中的一个重要范式。除了它们在描述无序经典磁体方面的相关性 [1,2] 之外,研究还表明,优化任务(例如旅行商问题)可以映射到求解自旋玻璃系统的基态 [1,3,4] 。通过引入横向场,可以将经典自旋玻璃提升为量子模型。由此产生的量子自旋玻璃本身就构成了研究无序和挫折与量子效应相互作用的重要场所 [5] 。此外,有证据表明,可以利用量子性来简化优化任务,例如通过量子退火 [6 – 10] 。量子自旋玻璃模型的教科书例子是量子 Sherrington-Kirkpatrick (QSK) 模型,它是经典 Sherrington-Kirkpatrick (SK) 模型的推广 [11,12] 。QSK 模型已在文献中得到了广泛的分析研究 [12 – 18] 和数值研究 [19 – 30] 。虽然著名的 Parisi 解 [31,32] 为经典 SK 模型提供了完整的解,但量子 SK 模型仍有许多悬而未决的问题。
跨视图图像地理位置定位旨在通过用GPS标记的卫星图像补丁绘制当前的街道视图图像来确定户外机器人的位置。最近的作品在识别卫星贴片中达到了显着的准确性,该卫星贴片在机器人所在,其中将中央像素在匹配的卫星贴片中用作机器人粗糙位置估计。这项工作着重于机器人在已知的卫星贴片中的细粒度定位。现有的细颗粒定位工作利用相关操作来获得卫星图像本地描述符和街道视图全局描述符之间的相似性。基于衬里匹配的相关操作简化了两个视图之间的相互作用过程,从而导致距离误差很大并影响模型的概括。为了解决这个问题,我们设计了一个具有自我注意力和跨注意层的跨视图功能fu-sion网络,以取代相关操作。此外,我们将分类和回归预测结合在一起,以进一步降低位置距离误差。实验表明,我们的新型网络体系结构的表现优于最先进的,可以在看不见的地区更好的概括能力。具体而言,我们的方法在同一区域和在活力基准的同一区域和看不见的区域中分别将中位定位距离误差降低了43%和50%。