摘要:随着量子计算机的出现,重新审视密码学的安全性近年来一直是一个活跃的研究领域。在本文中,我们估算了将 Grover 算法应用于 SPEEDY 分组密码的成本。SPEEDY 是 CHES'21 中提出的一类超低延迟分组密码。可以确保配备 Grover 算法的密钥搜索将分组密码的 n 位安全性降低到 n 2 位。问题是 Grover 算法需要多少量子资源才能工作。NIST 将对称密钥密码的后量子安全强度估计为 Grover 密钥搜索算法的成本。SPEEDY 提供 128 位安全性或 192 位安全性,具体取决于轮数。根据我们估计的成本,我们提出增加轮数不足以满足对量子计算机攻击的安全性。据我们所知,这是 SPEEDY 作为量子电路的首次实现。
E VITARA的复杂内饰具有数字驾驶舱,带有双甲板浮动控制台,全新定制方向盘,固定玻璃的天窗和柔软的双色调材料,并带有多色环境照明,以创建高级氛围。25.65厘米(10.1英寸)和26.04厘米(10.25英寸)的集成数字显示屏显示了多种信息和控件。通过无线连通性进一步提高了这种体验,以及来自“无限的Harman”的高级声音体验。优先考虑乘客的舒适性,E Vitara具有通风的前排座椅和ITS段的10向电动可调驾驶员座椅。E Vitara还提供了最佳的段后座椅系统,具有多功能的40:20:40拆分配置,易于启动,带有杯架的后排座椅扶手,以及斜倚和滑动功能,使灵活的启动空间可以匹配您的旅程。
在1983年,印度在汽车市场和汽车制造业方面几乎没有任何地方。通过引入适合印度社会经济条件的相关产品和技术,该公司能够产生对汽车的需求并逐渐建立市场。在过去的40年中,该公司与各种利益相关者合作,创建了从汽车制造业到销售到售后服务的本地和竞争性生态系统,该系统已推动印度成为世界上第三大的汽车市场。鉴于汽车制造具有较长的价值链,几乎所有经济领域都有很大的互联链路,因此该公司采取的行动不仅有助于成长和繁荣其利益相关者,他们直接为汽车业务做出了贡献,而且间接创造了数百万个就业机会,并使社会的众多部门受益。
对于恢复分组密码的密钥,Grover 搜索比传统的暴力破解技术提供了平方根速度。一般经验法则认为,通过将密钥长度加倍可以避免 Grover 搜索算法对私钥方案造成的安全威胁。然而,由于没有考虑 Grover 预言机的成本估算,这些概念仅提供了关于分组密码后量子安全性的一般概念。因此,在分组密码上安装 Grover 搜索的资源估算给出了关于此类分组密码在后量子世界中的安全性的具体概念。此外,由于未来量子计算机的计算能力不可预测,NIST 建议用基本操作、电路大小等来衡量安全性,而不是像在经典模型中评估安全性时那样用“安全位” [53]。到目前为止,Grover 搜索是唯一对现有分组密码 [13] 构成威胁的量子算法,估计发起攻击所需的资源可以了解攻击的效率。最近,从计算资源方面对量子对手的安全性评估受到了广泛关注,并在这方面进行了研究,以估计在对称密钥方案上发起 Grover 密钥搜索 [24, 36, 4, 7, 28, 29, 28, 29]、在哈希函数上发起 Grover 搜索 [5]、在二进制椭圆曲线上计算离散对数 [9] 等所需的资源。
摘要:在量子计算中,计算是使用量子力学实现的。通常,量子力学的两个主要现象(即叠加和纠缠)使量子计算能够比传统算法更有效地解决一些问题。量子计算最著名的优势是加速了一些以前由传统应用程序执行的计算。科学家和工程师正尝试将量子计算应用于不同的科学领域,例如药物发现、化学、计算机科学等。然而,在电力和能源应用中使用量子计算的尝试很少。本文试图通过讨论最著名的量子计算算法之一(即 Grover 算法)并讨论该算法在电力和能源系统中的潜在应用来突出这一差距,这可以作为在电力和能源系统中使用 Grover 算法的起点之一。
本报告是由美国政府某个机构资助的工作报告。美国政府或其任何机构、其雇员、承包商、分包商或其雇员均不对所披露信息、设备、产品或流程的准确性、完整性或任何第三方的使用或此类使用结果做任何明示或暗示的保证,或承担任何法律责任或义务,或表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务,并不一定构成或暗示美国政府或其任何机构、其承包商或分包商对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
这项工作。我们的论文取自 ETSI 量子安全密码学小组目前正在开发的一份更大的文件,该文件讨论了量子计算机对对称密码学的影响。旨在利用现有文献中关于高效量子电路和经过充分研究的量子纠错码的结果来估计 Grover 在合理的时间内破解标准化分组密码和哈希函数所需的物理资源。它还补充了之前的 ETSI QSC 报告 [1],该报告对算法实现、量子纠错和量子硬件性能做出了非常保守的假设,得出结论,256 位分组密码和哈希函数将保持对 Grover 的安全性。
在这里,我们付诸实践了盲端服务器量子计算的概念,其中有限的量子功率的客户端控制功能强大的服务器上的量子计算执行,而无需揭示计算的任何细节。特别是它是一个三节点设置,可以盲目执行口腔量子计算。在此盲目的口腔量子计算(BOQC)中,Oracle(Oscar)是另一个节点,功率有限,与客户(Alice)合作以向服务器提供量子信息,以便盲目执行量子计算的甲骨文部分。我们使用确切的Grover算法的两量和三个Qubit版本(即具有数据库大小为4 n⩽88)的测试,在GATE阵列方案和盲人群集状态方案中获得这些算法的最佳实现。我们讨论了使用氮胶丝钻石电子和核Qut在最先进的三节点实验中执行这些方案的可行性。
u f | s⟩= cos(θ/ 2)| s' + e ip sin(i/ 2)| oh⟩= cos(θ/ 2)| s'⟩ -sin(θ/ 2)|哦(7)
N ),并在 [Ben+97] 中被证明是渐近最优的。近年来,一种新的混合量子-经典 (HQC) 计算概念被提出[Llo00]并受到越来越多的关注,HQC 的概念被应用于计算机科学的多个领域[End+21; Ott+17; Liu+21; Ber+18]。通过将量子组件附加到经典计算机,两个部分相互补充,使得 HQC 兼具两者的优点,例如量子并行性[NC10]、数据存储和高效的算术运算。尽管一些文章讨论了 HQC 的详细结构,但在本文中,我们用第 2 部分来研究 HQC 的配置。此外,我们面临着将 Grover 算法应用于多解搜索问题时的低效率问题(这将遇到重复并恶化到 O ( N √