摘要。基于晶格的密码学是量词后加密的领先建议之一。最短的向量问题(SVP)可以说是基于晶格的密码学的加密分析最重要的问题,许多基于晶格的方案都具有基于其硬度的安全性主张。SVP的最佳量子算法是由于Laarhoven [LAA16]引起的,并且在(启发式)时间2 0中运行。2653 D + O(D)。 在本文中,我们对Laarhoven的结果进行了改进,并提出了一种(启发式)运行时间为2 0的算法。 2570 D + O(d)其中d是晶格尺寸。 我们还提出了时间内存交易,其中我们量化了算法的量子存储器和量子随机访问存储器的量。 核心思想是通过量子随机步行替换[LAA16]中使用的[LAA16]中使用的Grover的算法。2653 D + O(D)。在本文中,我们对Laarhoven的结果进行了改进,并提出了一种(启发式)运行时间为2 0的算法。2570 D + O(d)其中d是晶格尺寸。我们还提出了时间内存交易,其中我们量化了算法的量子存储器和量子随机访问存储器的量。核心思想是通过量子随机步行替换[LAA16]中使用的[LAA16]中使用的Grover的算法。
CareEdge Ratings 高级总监 Saikat Roy 和 CareEdge Global IFSC Ltd. 高级总监 Kiran Kavala 就“CareEdge Group 的服务产品、CareEdge Global 及其主权评级方法”进行了知识共享演讲。该会议由 CareEdge Ratings 副总监 Vaibhav Dedhia 组织,国际金融公司南亚基金集团 IFC 区域负责人 Neha Grover 女士和 CareEdge Ratings 总监 Meenal Sikchi 于 2024 年 11 月 21 日出席。
9量子算法5 9.1 Deutsch和Deutsch-Joza算法。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>5 9.1.1 DEUTE算法。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>5 9.1.2 Deutsch-Joza算法。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>6 9.3.3西蒙的年龄。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>8 9.2 Glanver的数据库搜索Aliarithm。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>9 9.3 Shoor保理算法中的指数加速。 div>。 div>。。。。。。。。10 9.3.1经典部分。。。。。。。。。。。。。。。。。。。。。。。。。。11 9.3.2量子傅立叶变换。。。。。。。。。。。。。。。。。。12 9.3.3加入碎片。。。。。。。。。。。。。。。。。。。。。。。。13 9.4关于量子算法基原始的一些想法。。。。。。。。。。。15 9.4.1量子相估计。。。。。。。。。。。。。。。。。。。15 9.4.2其他想法。。。。。。。。。。。。。。。。。。。。。。。。。15
●量子计算简介。●Qubits,统一转换和测量。●张量产品和狄拉克表示法。●超密集编码。●可逆性,量子门和量子电路。●在Bloch球上的量子位表示。●Deutsch-Jozsa算法和Simon的算法。●Bernstein Vazirani算法。●量子傅立叶变换。●Grover的搜索算法。●Shor的算法。●量子计算优势的基础。●用于量子图像处理的量子算法。●量子互联网的实际限制。●量子加密后。
本文考虑了4轮Keccak -224/256/384/512在量子环境下的抗原像性。为了有效地找到原像的旋转对应项对应的旋转数,我们首先建立一个基于Grover搜索的概率算法,利用某些坐标上比特对的固定关系来猜测可能的旋转数。这致力于实现每次搜索旋转对应项的迭代只包含一次用于验证的4轮Keccak变体运行,这可以降低量子环境下的攻击复杂度。在可接受的随机性下寻找旋转数的基础上,我们构建了两种攻击模型,专注于原像的恢复。在第一个模型中,Grover算法用于寻找原像的旋转对应项。通过64次尝试,可以获得所需的原像。在第二个模型中,我们将寻找旋转对应体抽象为在超立方体上寻找顶点,然后使用SKW量子算法来处理寻找作为旋转对应体的顶点的问题。对轮数减少的Keccak进行量子原像攻击的结果表明,第一个攻击模型对于4轮Keccak -224/256/384/512优于一般的量子原像攻击,而第二个模型对于4轮Keccak -512/384的攻击效果略低但更实用,即该模型比我们的第一个攻击模型和一般的量子原像攻击更容易在量子电路中实现。
工业排班调度是制造业高效规划和运营的重要组成部分。挑战在于为具有多个生产基地的端到端制造系统找到最佳生产计划。该计划必须遵守许多约束,包括法律法规和生产基地之间有限的中间存储。在汽车行业等批量密集型行业,还必须满足生产目标走廊。优化目标是在满足所有约束的同时最大限度地降低劳动力成本。工业排班调度 (QISS) 的量子算法 [1] 提供了第一个完全量子的方法来寻找受数量约束的工业劳动力规划问题的精确解决方案。基于 Grover 自适应搜索 (GAS) [2, 3],它继承了 Grover 算法相对于经典非结构化搜索方法(如蛮力搜索或随机搜索)的渐近二次加速。但是,这种二次加速导致实际加速的问题规模受到限制。一方面,寻求非常大的问题的精确解是不切实际的,因为:1)解决方案空间随着问题规模呈指数增长;2)约束通常对解决方案空间施加的结构非常小。因此,必须诉诸(经典的)启发式方法,例如模拟退火 [4] 或张量网络方法 [5]。另一方面,对于可以找到精确解的足够小的问题,与经典计算机相比,量子计算机的时钟速度较差,这往往会抵消二次加速 [6]。那么一个自然的问题是:是否存在一种机制,其中 QISS 可以返回精确的解决方案,其运行时间在现实世界中是可以接受的,并且优于经典的非结构化搜索?
Alexey Bochkovskiy;百度 PaddlePaddle 计算机视觉团队;徐成刚(长江商学院);Mohammed AlQuraishi(哥伦比亚大学);Evan Schnidman(EAS Innovation);林方真(香港科技大学);David Kanter(MLCommons);Sam Bowman(纽约大学);Maneesh Agrawala、Jeannette Bohg、Emma Brunskill、Chelsea Finn、Aditya Grover、Tatsunori Hashimoto、Dan Jurafsky、Percy Liang、Sharon Zhou(斯坦福大学);Vamsi Sistla(加州大学伯克利分校);Simon King(爱丁堡大学);Ivan Goncharov(Weights & Biases)
162 4034308 3 01-06-2022 AAIDAH LIFE SCIENCES PRIVATE LIMITED SANJEEV KUMAR 视频会议 163 3197963 41 01-06-2022 TV18 BROADCAST LTD. DUA ASSOCIATES.视频会议 164 4205003 41 01-06-2022 HT DIGITAL STREAMS LIMITED SAIKRISHNA & ASSOCIATES 视频会议 165 4217361 41 01-06-2022 SOORWAAR FILMS PRIVATE LIMITED NITIN GROVER & CO. 视频会议 166 4205473 32 01-06-2022 Mr. Pramit Sanghavi CHADHA AND CHADHA 视频会议 167 4206196 8 01-06-2022 WAHL CLIPPER CORPORATION ANAND AND ANAND. 视频会议
