1。空间堵塞:针对太空的对手的密码学 - 皇后学院Q4C座谈会(2024年12月)2。关于顺序函数和细粒度的密码学 - 加密2024会议演讲(2024年8月)3。对有限存储质量监视的多种固定随机性提取和安全性 - ITC 2024亮点曲目(2024年8月) - SJTU John John Hopcroft中心讲座系列(2024年1月) - NYU Crypto Reading Group(2023年12月) - TCC 2023会议谈话(2023年12月2023年4月4日。根据集体行动和通用等路线的签名长度的下限 - 欧洲欧洲大会2023会议演讲(2023年4月) - CMU Cylab Cylab Crypto研讨会(2023年4月) - 德州加密赛日(2023年4月)5。不可压缩的密码学 - NTT研究(2022年7月) - Eurocrypt 2022 Conference Talk(2022年5月) - UCLA Crypto Reading Group(2022年4月) - CMU Cylab Cylab Crypto研讨会(2022年4月) - 斯坦福消失的密码学和不可压缩的加密术 - 纽约大学加密阅读小组(2022年1月) - TCC 2021面对面的讲习班演讲(2021年11月)7。在有限的存储模型中消失的加密图 - TCC 2021会议演讲(2021年11月)8。迭代不均匀的多项式 - CFAIL 2021研讨会,加密货币2021年官方事件(2021年8月)9。有限存储模型中的简单计划 - Eurocrypt 2019会议演讲(2019年5月) - 普林斯顿一般考试(2019年5月)
机器学习、数值科学模拟和金融等许多领域对量子计算机的需求不断增长,这促使量子计算机产生更稳定、更不容易出错的结果。然而,减轻每个量子设备内部噪声的影响仍然是当前的挑战。在这个项目中,我们利用从现有 IBMQ 机器收集的系统校准数据,应用保真度退化检测来生成保真度退化矩阵。基于保真度退化矩阵,我们定义了多个新的评估指标来比较量子机的量子比特拓扑之间的保真度(相同拓扑上的量子比特保真度),并搜索最具有错误鲁棒性的机器,以便用户可以期待最准确的结果,并研究量子比特之间相关性的洞察力,这可能会进一步激发量子比特映射的量子编译器设计。此外,我们构建了一个可视化系统 VACSEN 来说明量子计算后端的错误和可靠性。
癌症是全球死亡的主要原因[1]。随着精确肿瘤学方面的进步,一些有针对性的抗癌药(TAM)改善了患有以前难以治疗的癌症患者的生存和生活质量[2-4],但是它们的高成本限制了他们的使用,可能对癌症患者的死亡率进行影响[5]。这引起了医疗保健专业人员的高度关注[6]。在美国等高收入国家中,TAR疗法主导了抗癌药物的支出[7],每种治疗的总靶向药物中位数估计比传统的化学疗法成本高123 072美元[8]。此外,TAM的价格上涨甚至威胁到保险患者的财务状况[9]。未解决的经济困难可能会导致次优治疗,治疗掉落,症状负担和早逝的风险增加[10,11]。在中国,对于转移性结直肠癌的一线或二线治疗,建议将化学疗法和西妥昔单抗或贝伐单抗结合的治疗方法作为高成本,但由于其高成本而接受它。使用化学疗法和TAMS的患者的平均每个周期直接医疗费用比单独使用化学疗法的患者高931.1美元[12]。
摘要 目的 要获得价格昂贵的抗癌药物通常需要保险覆盖。将此类药物纳入报销清单是实现报销的第一步。我们评估了 2009 年至 2018 年期间世卫组织基本药物清单中抗癌药物在中国的报销情况。 设置和研究设计 使用公开数据,我们评估了第 20 版世卫组织基本药物示范清单 (EML) 中列出的哪些抗癌药物被纳入了中国国家报销药品清单 (NRDL)。对于世卫组织 EML 中的五种目标抗癌药物,我们还评估了它们被纳入中国 31 个省级报销药品清单 (PRDL) 的情况。使用逻辑回归检验目标抗癌药物的纳入是否与省级经济水平相关。主要结果测量 2017 年前后将五种靶向抗癌药物纳入国家医保目录和省级医保目录的情况。结果 2017 年国家医保目录涵盖了 WHO 基本药物清单上的所有抗癌药物(除一种当时未在中国批准的药物外),到 2018 年,所有 31 个省级医保目录都列出了除尼洛替尼以外的靶向抗癌药物;在 2017 年国家医保目录覆盖规定之前,四个省份已经覆盖了所有五种靶向抗癌药物。省级经济水平和特定癌症的地区发病率似乎与五种靶向抗癌药物纳入省级医保目录无关。结论我们的研究结果表明,通过将药物纳入国家和省级报销清单,中国在促进靶向抗癌药物的可及性方面迈出了重要的第一步。需要进一步研究以确定将其纳入省级医保目录是否提高了中国高价靶向抗癌药物的可及性、适当使用和可负担性。
图3。径向极化的QD激光是从杂种W TM -SLR纳米腔实现的。(a)在线性尺度上针对不同输入泵脉冲能的正常检测角度收集的发射光谱。插图:输出发射强度是对数字尺度上输入泵脉冲能量的函数。(b)激光发射光束的远场图案。白色箭头显示输出激光模式的极化方向。(c)在选定的极化方向下的光束轮廓。白色箭头在检测器前显示线性偏振器的偏振方向。(d)在p偏振光下的小波vector上模拟带结构。黑色圆圈指示k x = 0的w tm -slr模式。红色圆圈表示在非零K x处的W TM -SLR边带。(E)在W TM -SLR边带处模拟电场(| E | 2,单位为V 2 /M 2)。在模拟中将入射光E 0的电场设置为1 V/m。
摘要:极端天气条件和自然灾害 (ND) 是电网停电的主要原因。在这些灾难性事件中,有必要加强电力系统的弹性,而微电网可能被视为实现这一目标的最佳方式。本文提出了两种不同的能源系统方案,以提高电力系统在随机停电期间的弹性。在第一种情况下,柴油发电机 (DG) 与公用电网 (UEG) 和本地电力负荷 (ELL) 一起在电网中断期间向关键负载输送能量。第二种方案是由光伏 (PV) 系统、电池储能 (BES) 系统和本地电力负荷组成的电网连接临时微电网 (MG)。停电期间,光伏系统和 BES 系统用于为关键负载供电。本研究的主要目的是从技术、经济和环境的角度比较这两种基于弹性的系统。鉴于它在恶劣天气下需要比其他负荷更大的弹性,因此选择了印度尼西亚龙目岛的医院负荷作为关键负荷。目标函数考虑了系统的预定义约束,以降低总净现值成本 (NPC) 和能源成本,从而最大限度地提高系统弹性 (COE)。多能源资源优化 (HOMER) 电网模拟了 2021 年 8 月的 3 天停电,结果表明两种情景的弹性增强几乎相同。第一种情景导致二氧化碳排放量减少;然而,第二种情景的运营成本和 COE 更低。模拟结果显示,系统 1 每年产生的排放量为 216.902 千克/年,而系统 2 仅产生 63.292 千克/年的排放量。这项研究表明,由于基于 RES 的 MG 不燃烧化石燃料来发电,因此它们是更环保的资源。
SDTM编程中的规则FDA提交。 DIA 2018全球年会专业海报; SAS Global Forum 2019论文集; Pharmasug 2019 -Xiangchen(Bob)CUI的药品SAS®用户小组会议论文集; Hao Guan,Min Chen和Letan LinSDTM编程中的规则FDA提交。DIA 2018全球年会专业海报; SAS Global Forum 2019论文集; Pharmasug 2019 -Xiangchen(Bob)CUI的药品SAS®用户小组会议论文集; Hao Guan,Min Chen和Letan Lin
Umut Can Oz a,b 、Zeynep Busra Bolat c 、Alessandro Poma b 、Lijuanguan b 、Dilek Telci c 、Fikrettin
MA6513 先进制造设计 Lye Sun Woh (cc) Lee Siang Guan, Stephen Narasimalu Srikanth