简介:液体活检是一种非侵入性方法,通过分析血液或其他体液中的癌症生物标志物来检测癌症并监测治疗反应。脑膜瘤是最常见的原发性中枢神经系统肿瘤,生物标志物在其诊断、预后和治疗监测中起着至关重要的作用。世界卫生组织 (WHO) 根据肿瘤等级和基因的分子改变对脑膜瘤进行分类,例如 NF2、AKT1、TRAF7、SMO、PIK3CA、KLF4、SMARCE1、BAP1、H3K27me3、TERT 启动子和 CDKN2A/B。液体活检,特别是游离 DNA (cfDNA) 分析,已显示出监测脑膜瘤的潜力,因为它可以检测血液中的 ctDNA 释放,不受血脑屏障的影响。还发现,microRNA (miRNA) 在各种癌症(包括脑膜瘤)中失调,具有作为诊断生物标记物的潜力。此外,研究肿瘤微环境中的细胞因子可能有助于建立脑膜瘤的预后或诊断组。
摘要虽然对基因-增强子相互作用的调控进行了深入研究,但其应用仍然有限。在这里,我们重建了 CTCF 结合位点阵列,并设计了一种带有 tetO 的合成拓扑绝缘体用于染色质工程 (STITCH)。通过将 STITCH 与连接到 KRAB 结构域的 tetR 偶联以诱导异染色质并禁用绝缘,我们开发了一种药物诱导系统来控制增强子对基因的激活。在人类诱导多能干细胞中,插入 MYC 和增强子之间的 STITCH 下调了 MYC。STITCH 的进行性诱变导致基因-增强子相互作用的优先升级,证实了 STITCH 的强大绝缘能力。STITCH 还改变了 MYC 周围的表观遗传状态。通过药物诱导的时间过程分析发现,H3K27me3 抑制标记的沉积和去除跟随并反映表达变化,但不先于表达变化并决定表达变化。最后,插入 NEUROG2 附近的 STITCH 会削弱分化神经祖细胞中的基因激活。因此,STITCH 应该可以广泛应用于功能遗传学研究。
组蛋白 H3.3 突变是儿童神经胶质瘤的标志,但其核心致癌机制尚不明确。为了确定主要效应物,我们使用 CRISPR-Cas9 将 H3.3K27M 和 G34R 突变引入先前的 H3.3 野生型脑细胞中,同时将神经胶质瘤细胞中的突变恢复为野生型。ChIP-seq 分析将 K27M 广泛地与改变的 H3K27me3 活性联系起来,包括超级增强子内,这表现出转录功能紊乱。这在很大程度上与 H3.3 DNA 结合无关。K27M 和 G34R 突变诱导了几种相同的通路,表明关键的共同致癌机制包括激活神经发生和 NOTCH 通路基因。H3.3 突变型神经胶质瘤对 NOTCH 通路基因敲除和药物抑制也特别敏感,从而降低了它们在培养中的生存能力。细胞的相互编辑通常会在异种移植试验中对致瘤性产生相互影响。总体而言,我们的研究结果定义了常见和不同的 K27M 和 G34R 致癌机制,包括潜在的靶向通路。
T细胞功能障碍,包括记忆力损失和疲劳,是CAR T细胞疗法功效的主要局限性。在CAR T细胞中操纵转录因子(TF)活性,例如过表达FOXO1和JUN或PRDM1和NR4A3的消融,可以改善其在肿瘤控制过程中的衰竭分化和记忆丧失。这表明长时间的肿瘤暴露可能会导致转录程序失调,以诱导CAR T细胞功能障碍和记忆力丧失。ezh2,催化赖氨酸27(H3K27ME3)在编排多个基因程序表达的H3的三甲基化中,在小鼠中T细胞免疫反应的调节中起着核心作用。然而,是否需要EZH2才能消除肿瘤,以及肿瘤是否靶向T细胞EZH2诱导CAR T细胞功能障碍仍然未知。在这里,我们证明了EZH2是CAR T细胞反应的主要调节剂,对肿瘤控制至关重要,并且在CAR T细胞中强迫表达耐磷酸化的EZH2的EZH2使它们具有增强的能力,可抵抗肿瘤诱导的功能障碍和记忆损失。
表观遗传失调越来越多地被认为是多发性骨髓瘤 (MM) 的一个致病因素。特别是 H3 赖氨酸 27 (H3K27me3) 的三甲基化,它由多梳抑制复合物 2 (PRC2) 的亚基 PHD 指蛋白 19 (PHF19) 催化,最近已被证明是 MM 致瘤性的关键介质。在 MM 中 PHF19 的过度表达与更差的临床结果有关。然而,虽然有越来越多的证据表明 PHF19 过度表达在 MM 致癌作用中起着关键作用,但下游机制仍有待阐明。在当前的研究中,我们使用 PHF19 的功能性敲低 (KD) 来研究 PHF19 的生物学作用,并表明 PHF19KD 会导致体外和体内肿瘤生长减少。 PHF19 KD 后,bcl2、myc 和 EGR 等主要癌症因子的表达降低,进一步强调了 PHF19 在 MM 生物学中的作用。此外,我们的研究结果还强调了 PHF19 过表达对预后的影响,这与生存率下降显著相关。总体而言,我们的研究强调了这样一个前提:针对 PHF19-PRC2 复合物将为新型 MM 疗法开辟道路。
在人类心脏发生中如何相互作用仍然难以捉摸。在这里,我们发现人类特异性心脏制动 lncRNA 1 (HBL1) 与人类多能干细胞 (hPSC) 中的两个 PRC2 亚基 JARID2 和 EED 相互作用。JARID2、EED 或 HBL1 的缺失显著增强了心脏从 hPSC 的分化。HBL1 耗竭破坏了全基因组的 PRC2 占据和必需心脏发生基因上的 H3K27me3 染色质修饰,并广泛增强了未分化 hPSC 和后来分化中的心脏发生基因转录。此外,ChIP-seq 显示在 HBL1 和 JARID2 hPSC 中 62 个重叠心脏发生基因上的 EED 占据率降低,表明心脏发生基因的表观遗传状态由多能性阶段的 HBL1 和 JARID2 决定。此外,在心脏发育后,HBL1 的细胞质和细胞核部分可以通过保守的“microRNA-1-JARID2”轴进行串扰,从而调节心脏发生基因转录。总体而言,我们的研究结果阐明了 HBL1 在引导 PRC2 功能在人类早期心脏发生过程中的不可或缺的作用,并扩展了 HBL1 的细胞质和细胞核部分可以协调人类心脏发生的 lncRNA 的机制范围。
Zeste同源2(EZH2)的增强子是催化H3K27me3的开发中的重要转化调节剂。EZH2在心外膜发育中的作用仍然未知。在这项研究中,我们表明EZH2在人和小鼠心脏发育过程中都在心外膜细胞中表达。EZH2心外膜缺失导致心外膜细胞迁移,肌肉拨动发育不全和缺陷的冠状动脉丛发育,导致胚胎致死性。通过使用RNA测序,我们确定了EZH2在心脏发育过程中控制了心外膜细胞中金属蛋白酶3(TIMP3)的组织抑制剂的转录。功能丧失的研究表明,EZH2心外膜细胞通过抑制TIMP3表达来迁移。我们还发现,心外膜EZH2表达 - 诱导的TIMP3上调节会导致质谱法中胚胎心肌的细胞外基质重建。总而言之,我们的结果表明,心外膜细胞迁移需要EZH2,因为它阻断了Timp3转录,这对于心脏发育至关重要。我们的研究提供了对EZH2在细胞迁移和心外膜发育中的功能的新见解。
通过同源定向修复 (HDR) 定义的 CRISPR-Cas9 基因组编辑对于将点突变和 DNA 供体构建体引入细胞系、动物以及治疗人类遗传疾病非常重要。然而,HDR 修复 DNA 双链断裂 (DSB) 的效率通常远低于非同源末端连接 (NHEJ) 进行的不必要的竞争性修复。因此,找到简单的程序来扭转 CRISPR-Cas9 基因组编辑过程中的 DSB 修复途径选择朝向 HDR 而不降低总基因组编辑效率是非常有意义的 [1] 。基因组编辑效率受 sgRNA/Cas9 的切割效率、参与 DNA 修复的蛋白质的表达以及它们对 DSB 的募集的影响。染色质修饰被认为可以调节所有这些过程。在半定量测定中,未发现 5-氮杂胞苷 (5-aza) 抑制 DNA 甲基化会改变基因组编辑效率 [2] 。组蛋白 3 赖氨酸 36 三甲基化 (H3K36me3) 促进 HDR,而 H3K36me2 以上下文依赖的方式增加 NHEJ [ 3 , 4 ]。据报道,异染色质中的致密 DNA 堆积(以 H3K27me3 和 H3K9me3 为特征)会影响低浓度 CRISPR-Cas9 下的修复速度,但不会影响 HDR/NHEJ 途径选择 [5] 。
多发性骨髓瘤是一种异质性血液病,起源于骨髓,以恶性浆细胞单克隆扩增为特征。尽管已有新的治疗方法,但多发性骨髓瘤在临床上仍然具有挑战性。预后不良患者的一个共同特征是表观遗传沉默子EZH2(PRC2的催化亚基)活性增强。值得注意的是,PRC2的募集缺乏序列特异性,迄今为止,确定哪些基因组位点是PRC2介导沉默的分子机制仍不清楚。EZH2上存在一个长链非编码RNA (lncRNA)结合口袋,这表明lncRNA可能介导PRC2募集到特定的基因组区域。本文,我们结合RNA免疫沉淀测序、RNA测序和染色质免疫沉淀测序分析了人类多发性骨髓瘤原代细胞和细胞系,以鉴定EZH2的潜在lncRNA伴侣。我们发现lncRNA浆细胞瘤变异易位1 (PVT1) 直接与EZH2相互作用,并且在预后不良的患者中过表达。此外,预测为PVT1靶标的基因表现出H3K27me3富集,并与促凋亡和抑癌功能相关。事实上,PVT1抑制独立地促进了PRC2靶基因ZBTB7C、RNF144A和CCDC136的表达。总而言之,我们的研究表明,PVT1是PRC2介导的多发性骨髓瘤中抑癌基因和促凋亡基因沉默的相互作用伙伴,使其成为一个极具吸引力的潜在治疗靶点。
需要一种有效的mRNA敲低策略来探索细胞和胚胎中的基因功能,尤其是在早期胚胎发育过程中了解母体mRNA衰变的过程。cas13是一种新型的RNA靶向CRISPR效应蛋白,可以结合并切割互补的单链RNA,该RNA已用于小鼠和人类细胞中的mRNA敲低以及植物中的RNA病毒干扰。cas13尚未据报道用于猪。在当前的研究中,我们探讨了猪中CRISPR/ CAS13D介导的内源性RNA敲低的可行性。KDM5B是H3K4ME3的组蛋白去甲基酶,在转录水平下下调了50%,在猪成纤维细胞中,CRISPR/CAS13D在转录水平下被下调。敲低KDM5B诱导的H3K4ME3表达,并降低了H3K27ME3,H3K9ME3,H3K4AC,H4K8AC和H4K12AC的丰度。这些变化影响了细胞增殖和细胞周期。此外,将CRISPR/CAS13D系统稳定地整合到猪基因组中,导致CAS13D的连续表达和KDM5B的持续敲低。最后,在猪par植物发育胚胎中进一步验证了CAS13D的RNA靶向潜力。通过将cas13d mRNA和靶向KDM5B的GRNA的显微注射到猪卵母细胞中,KDM5B的表达被下调,H3K4ME3的丰度按预期增加,并且胚胎发育相关基因的表达被相应地更改。这些结果表明CRISPR/CAS13D为猪的时空转录操作提供了易于编程的平台。繁殖(2021)162 149–160
