。cc-by-nc-nd 4.0国际许可证。根据作者/资助者提供了预印本(未经同行评审的认证)提供的,他已授予Biorxiv的许可证,以在2025年2月8日发布的此版本中在版权所有者中显示预印本。 https://doi.org/10.1101/2025.02.07.636860 doi:Biorxiv Preprint
孤立的C.腺体毛状体的光显微镜图像(1 mm比例尺)。b Spearman相关矩阵RNA-Seq和chip-seq数据的H3K4me3,H3K56AC,H3K27ME3和H2A.Z在腺体trichomes中。c C. sativa核型,带有腺体毛状体数据密度图(i)所有基因(ii)转录基因(iii)H3K4ME3峰(IV)H3K56AC峰(v)未转录的基因(VI)H3K27ME3域H3K27ME3域和(VII)D H2A.Z,H3K27ME3,H3K56AC和H3K4ME3峰值注释。e尺度区域基因图和腺体毛状体H3K4me3,H3K56AC,H3K27ME3和H2A.Z的相关热图读取分布在跨腺毛状体转录基因和未转录的基因上的分布。
摘要 随着肿瘤免疫调控和免疫治疗的进展,组蛋白修饰在建立抗肿瘤免疫能力中的作用不断被发现,开发表观遗传药物(epi-drugs)与免疫检查点抑制剂或嵌合抗原受体-T细胞疗法的联合疗法有望提高免疫治疗的效益。组蛋白H3赖氨酸4三甲基化(H3K4me3)是肿瘤免疫调控中一个关键的表观遗传修饰,深度参与调节肿瘤免疫原性、重塑肿瘤免疫微环境、调节免疫细胞功能。但如何整合这些理论基础,创造新的基于H3K4三甲基化的治疗策略并优化现有疗法仍不清楚。本综述中,我们阐述了H3K4me3及其修饰物调控抗肿瘤免疫的机制,并探索了H3K4me3相关药物与免疫疗法联合治疗的潜力。了解 H3K4me3 在癌症免疫中的作用将有助于开发新的表观遗传疗法和推进基于免疫疗法的联合方案。
1.1。真核生物中的表观遗传标记,DNA围绕组蛋白八聚体形成核小体,可以化学修饰。在组蛋白尾部进行的这些修饰,例如甲基化和乙酰化,影响染色质结构和基因可及性,而无需改变DNA序列。对这些修改对基因表达的影响需要诱导其在神经区域的收益或损失来评估因果关系。特定的修饰,H3K4ME3,与活性基因启动子相关,而H3K9ME3和H3K27ME3与转铺回归有关(Policarpi等,2022)。存在H3K4me3与转录之间的相关性,但是为了研究因果关系,需要通过组蛋白脱甲基酶诱导H3K4ME3损失的实验来确定在那里是否下调转录。
图5。High-resolution profiling of FACS-isolated type 3 innate lymphoid cells (ILCs) using autoCUT&RUN identifies unique genomic compartments, including active regulatory elements (H3K4me1, H3K27ac), promoters (H3K4me3), and gene bodies (H3K36me3), as well as repressed genes (H3K27me3) and转录因子结合位点(CTCF)(a)。比较FACS分离的原代小鼠粒细胞,3型ILC和天然杀伤细胞(LY49H+)的目标图显示出明显的H3K4ME3(启动子)和H3K27ME3(抑制基因)剖面(B)。所有由Inmger制备和提供的细胞,每反应以10,000个核测定。
C-Jun的丧失导致早期小鼠胚胎死亡,这可能是由于未能发展出正常的心脏系统。C-Jun如何调节人类心肌细胞命运仍然未知。在这里,我们将人类多能干细胞的体外分化成心肌细胞来研究C-JUN的作用。令人惊讶的是,C-Jun的敲除通过TNNT2+细胞的数量来改善心肌细胞的产生。ATAC-SEQ数据表明,C-JUN缺陷导致与心肌细胞开发有关的关键调节元件上的染色质可及性提高。CHIP-SEQ数据显示,基因敲除C-JUN增加了RBBP5和SETD1B表达,从而改善了调节心脏发生的关键基因的H3K4ME3沉积。C-Jun KO表型可以使用组蛋白脱甲基酶In- hibitor CPI-455复制,该脱甲基酶CPI-455也上调了H3K4me3水平并增加了心肌细胞的产生。单细胞RNA-seq数据定义了三个细胞分支,敲除C-JUN激活了与心脏病相关的更多调节。总而言之,我们的数据表明,C-JUN可以通过调节H3K4ME3修饰和染色质访问性来调节心肌细胞命运,并阐明C-Jun如何调节人类心脏的发育。
需要一种有效的mRNA敲低策略来探索细胞和胚胎中的基因功能,尤其是在早期胚胎发育过程中了解母体mRNA衰变的过程。cas13是一种新型的RNA靶向CRISPR效应蛋白,可以结合并切割互补的单链RNA,该RNA已用于小鼠和人类细胞中的mRNA敲低以及植物中的RNA病毒干扰。cas13尚未据报道用于猪。在当前的研究中,我们探讨了猪中CRISPR/ CAS13D介导的内源性RNA敲低的可行性。KDM5B是H3K4ME3的组蛋白去甲基酶,在转录水平下下调了50%,在猪成纤维细胞中,CRISPR/CAS13D在转录水平下被下调。敲低KDM5B诱导的H3K4ME3表达,并降低了H3K27ME3,H3K9ME3,H3K4AC,H4K8AC和H4K12AC的丰度。这些变化影响了细胞增殖和细胞周期。此外,将CRISPR/CAS13D系统稳定地整合到猪基因组中,导致CAS13D的连续表达和KDM5B的持续敲低。最后,在猪par植物发育胚胎中进一步验证了CAS13D的RNA靶向潜力。通过将cas13d mRNA和靶向KDM5B的GRNA的显微注射到猪卵母细胞中,KDM5B的表达被下调,H3K4ME3的丰度按预期增加,并且胚胎发育相关基因的表达被相应地更改。这些结果表明CRISPR/CAS13D为猪的时空转录操作提供了易于编程的平台。繁殖(2021)162 149–160
CUT&RUN 方法 CUT&RUN 使用 CUTANA™ChIC/CUT&RUN 试剂盒进行,起始于 500k K562 细胞,含 0.5 µg IgG(EpiCypher 13-0042)、H3K4me3(EpiCypher 13-0060)、H3K27me3(EpiCypher 13-0055)或 0.125 µg CTCF(EpiCypher 13-2014)抗体,一式两份。使用 CUTANA™CUT&RUN 文库制备试剂盒(EpiCypher 14-1001/14-1002)以 5 ng DNA(或回收总量,如果少于 5 ng)进行文库制备。文库在 Illumina NextSeq2000 上运行,采用双端测序(2x50 bp)。样本测序深度为 5.5/18.8 百万个读数 (IgG Rep 1/Rep 2)、14.2/17.0 百万个读数 (H3K4me3 Rep 1/Rep 2)、24.7/18.1 百万个读数 (H3K27me3 Rep 1/Rep 2) 和 8.6/5.5 百万个读数 (CTCF Rep 1/Rep 2)。使用 Bowtie2 将数据与 T2T-CHM13v2.0 基因组比对。过滤数据以删除重复、多比对读数和 ENCODE DAC 排除列表区域。
摘要:研究表观遗传调控与抗生物胁迫之间的关系为植物保护和作物改良提供了替代方法。为了阐明番茄对灰葡萄孢菌的反应机制,我们进行了染色质免疫沉淀 (ChIP) 分析,结果显示沿着早期诱导基因 SlyDES、SlyDOX1 和 SlyLoxD(编码氧化脂质途径酶)以及 SlyWRKY75(编码激素信号转录调节剂)的 H3K9ac 标记增加。这种组蛋白标记比之前研究的 H3K4me3 分布更为明显。RNAPol-ChIP 分析反映了与组蛋白修饰增加相关的实际基因转录。抗 P. syringae 的氧化脂质相关基因中标记的不同模式支持病原体特异性谱,而 SlyWRKY75 中没有出现显著差异。内含子结合 miR1127-3p 对 SlyWRKY75 的表观遗传调控得到了对照植物中 SlyWRKY75 前 mRNA 存在的支持。有趣的是,研究发现,在 B. cinerea 和 P. syringae 的响应下,mRNA 会积累,而 miRNA 的减少只发生在 B. cinerea 上。内含子区域呈现出与两种致病系统中的基因其余部分相似的标记模式,B. cinerea 上的 miRNA 结合位点的 H3K4me3 除外。我们定位了编码 Sly-miR1127-3p 的基因,该基因在 B. cinerea 的启动子上呈现出降低的 H3K4me3。
将 K-MetStat Panel 加入指定用于 H3K4me3、H3K27me3 和 IgG 对照抗体的反应中。如果使用 500,000 个细胞/反应,则添加 2 µL。对于较低的细胞数,请按照手册说明减少 K-MetStat Panel。轻轻涡旋试管以混合并快速旋转。
