转座元素(TES)是寄生虫DNA序列,能够沿所有基因组的染色体移动和繁殖。可以通过靶向沉默表观遗传标记来控制它们,这可能会影响包括基因在内的相邻序列的Chro Matin结构。在这项研究中,我们使用了来自几个果蝇Melanogaster的卵巢样品和果蝇Simulans野生型菌株产生的转录组和表观基因组高吞吐量数据,以精细量化Te插入对基因RNA水平和组蛋白标记的影响(H3K9ME3和H3K9ME3和H3K4ME3)。我们的结果揭示了与梅拉·诺加斯特(D. Mela Nogaster)相比,TES对D. simulans中直源基因的表观遗传作用更强。同时,我们发现了D. mel Anogaster基因组中TE对基因H3K9me3的差异的较大贡献,这证明了Te数字周围的Te数与D. melanogaster中这种染色质标记的水平的更强相关性。总体而言,这项工作有助于理解TE在基因组中的物种特异性影响。它为TE提供的可观自然变异性提供了新的启示,这可能与适应性和进化潜力的对比有关。
用途:EpiNext™ CUT&LUNCH 检测试剂盒是一套完整的优化试剂,旨在快速从细胞中直接富集蛋白质(组蛋白或强结合转录因子)特异性 DNA 复合物,以通过 qPCR 或使用 Illumina 平台的下一代测序分析蛋白质与 DNA 之间的相互作用。起始材料:起始材料可以包括各种哺乳动物细胞样本,例如来自烧瓶或培养皿的培养细胞、原代细胞或从血液、体液、新鲜/冷冻组织中分离的稀有细胞群,以及从整个细胞群和胚胎细胞中分选的特定细胞等。细胞输入量:每个反应的细胞量可以是 2 x 10 3 到 5 x 10 5 个细胞。为了获得最佳制备效果,细胞输入量应为 2 x 10 5 ,尽管只需 500 个细胞即可获得修饰组蛋白的结果。抗体:抗体应为 ChIP 级,以识别与 DNA 或其他蛋白质结合的蛋白质。如果您使用的抗体尚未经过 ChIP 验证,则应使用适当的对照抗体(例如抗 RNA 聚合酶 II、抗 H3K4me3 或抗 H3K9me3)来证明这些抗体适合 ChIP。
摘要 CRISPR 相关 (Cas) 酶通过实现 RNA 引导的基因组编辑彻底改变了生物学。在供体模板存在下进行同源定向修复 (HDR) 目前是 CRISPR-Cas 诱导的双链 DNA 切割后引入精确编辑的最通用方法,但 HDR 效率通常低于导致插入和缺失 (indel) 的末端连接途径。我们测试了使用与 PRDM9 融合的 Cas9 构建体可以增加 HDR 的假设,PRDM9 是一种染色质重塑因子,可沉积组蛋白甲基化 H3K4me3 和 H3K36me3,经证实可介导人类细胞中的同源重组。我们的结果表明,融合蛋白特异性地在 DNA 中的 Cas9 切割位点接触染色质,使观察到的 HDR 效率加倍,并将 HDR:indel 比率提高 3 倍,与单独使用 Cas9 诱导的相比。HDR 增强发生在多种细胞系中,脱靶基因组编辑没有增加。这些发现强调了染色质结构对于 CRISPR-Cas 基因组编辑过程中 DNA 修复途径选择的重要性,并提供了一种提高 HDR 效率的新策略。意义声明 CRISPR-Cas 介导的同源定向修复 (HDR) 可为各种研究和临床应用提供精确的基因组编辑,但由于竞争性端接途径,HDR 效率通常较低。在这里,我们描述了一种通过设计 CRISPR-Cas9-甲基转移酶融合蛋白来影响 DNA 修复途径选择并提高 HDR 效率的简单策略。该策略强调了组蛋白修饰对 CRISPR-Cas 诱导的双链断裂后 DNA 修复的影响,并增加了 CRISPR 基因组编辑工具箱。
DNMT3B 中的双等位基因次等位基因突变会破坏 DNA 甲基转移酶活性并导致免疫缺陷、着丝粒不稳定、面部异常综合征 1 型 (ICF1)。尽管几种 ICF1 表型与异常低甲基化的重复区域有关,但导致其余疾病表型的独特基因组区域仍然基本未知。在这里,我们探索了两个 ICF1 患者衍生的诱导性多能干细胞 (iPSC) 及其 CRISPR-Cas9 校正克隆,以确定 DNMT3B 校正是否可以全面克服 DNA 甲基化缺陷和表观基因组中的相关变化。携带不同 DNMT3B 变体的 ICF1 iPSC 之间整个基因组的低甲基化区域高度可比,并且与 ICF1 患者外周血和淋巴母细胞系中的低甲基化区域明显重叠。这些区域包括大的 CpG 岛结构域,以及几个谱系特异性基因(特别是免疫相关基因)的启动子和增强子,这表明它们在早期发育过程中已被预先标记。CRISPR 校正的 ICF1 iPSC 显示,大多数与表型相关的低甲基化区域在编辑后会重新获得正常的 DNA 甲基化水平。然而,在 ICF1 iPSC 中低甲基化最严重的区域(这些区域也显示出 H3K4me3 水平的最高增加和/或 CTCF 结合异常),表观遗传记忆仍然存在,并且低甲基化仍未得到校正。总体而言,我们证明恢复 DNMT3B 的催化活性可以逆转大多数异常的 ICF1 表观基因组。然而,只有一小部分基因组能够抵御这种拯救,这凸显了逆转由于全基因组表观遗传扰动导致的疾病状态的挑战。揭示持久表观遗传记忆的基础将促进克服这一障碍的策略的发展。
体外研究表明,神经发育障碍基因髓鞘转录因子 1 样 (MYT1L) 在成纤维细胞向神经元直接分化过程中抑制非神经元谱系基因。然而,MYT1L 在成年哺乳动物大脑中的分子和细胞功能尚未完全确定。在这里,我们发现 MYT1L 的缺失会导致深层 (DL) 基因表达上调,这对应于成年小鼠皮质中 DL/UL 神经元的比率增加。为了确定潜在的机制,我们进行了靶向切割和使用核酸酶释放 (CUT&RUN) 以绘制 MYT1L 结合靶标和 MYT1L 缺失后小鼠发育皮质和成人前额叶皮质 (PFC) 中的表观遗传变化。我们发现 MYT1L 主要与开放染色质结合,但启动子和增强子之间具有不同的转录因子共占。同样,多组学数据集整合表明,在启动子处,MYT1L 的缺失不会改变染色质的可及性,但会增加 H3K4me3 和 H3K27ac,从而激活一组早期神经元发育基因以及 Bcl11b(DL 神经元发育的关键调节因子)。同时,我们发现 MYT1L 通常通过关闭染色质结构和促进活性组蛋白标记的去除来抑制与神经元迁移和神经元投射发育相关的神经源性增强子的活性。此外,我们还表明 MYT1L 在体内与 HDAC2 和转录抑制因子 SIN3B 相互作用,这为抑制组蛋白乙酰化和基因表达提供了潜在机制。总体而言,我们的研究结果提供了 MYT1L 体内结合的全面图谱,并提供了有关 MYT1L 缺失如何导致成年小鼠大脑中早期神经元发育程序异常激活的机制见解。
摘要:whirly1是一种小型植物特异性的ssDNA结合蛋白,双重位于叶绿体和核中,讨论是作为一种逆行信号,可作为逆行信号传递从叶绿素传递到细胞核的应激信号,并在那里触发与压力相关的基因表达。在这项工作中,我们调查了使用两条过表达线(OEW1-2和OEW1-15)在大麦的干旱应力反应中的功能。Whirly1的过表达延迟了原发性叶片中与干旱应力相关的发作。干旱应激的两个脱甲酸(ABA)依赖性标记基因HVNCED1和HVS40,其在干旱治疗期间诱导的野生型中的表达并未在过表达线中诱导。此外,叶片中的ABA浓度与干旱相关的浓度增加在Whirly1过表达线中被抑制。分析Whirly1功能获得的影响对核基因表达与干旱相关的重编程的影响,进行了RNASEQ进行比较野生型和过表达线的影响。群集分析揭示了一组高度上调的基因,该基因响应野生型的干旱,而不是在Whirly1过表达线中。是许多胁迫和脱落酸(ABA)相关的基因。与野生型相比,在OEW1系中上调的另一个簇包含上调的基因。这些与原代新陈代谢,叶绿体功能和生长有关。我们的结果表明,Whirly1充当枢纽,平衡与压力相关和发育途径之间的权衡。测试Whirly1的功能获得的功能是否影响与压力相关基因表达的表观遗传控制,我们分析了启动子不同区域和HVNCED1和HVS40的转录起始位点的干旱相关组蛋白修饰。有趣的是,在Whirly1过表达线中,两个基因的构想标记水平(H3K4ME3和H3K9AC)显然降低了。我们的结果表明,被讨论以作为逆行信号的Whirly1会通过差异组蛋白的修饰在干旱过程中影响与ABA相关的核基因表达的重编程。
用途:EpiNext™ CUT&RUN Fast Kit 旨在从低输入细胞/染色质中快速富集与蛋白质(组蛋白或转录因子)复合的特定 DNA,并通过下一代测序使用 Illumina 平台或 qPCR 等其他方法识别或绘制体内蛋白质-DNA 相互作用。该试剂盒的创新工作原理、优化的协议和组件允许在最小化非特异性背景水平的情况下捕获目标蛋白质/DNA 复合物。捕获的 DNA 特别适合构建非条形码(单重)和条形码(多重)文库,以更少的偏差和更高的分辨率绘制目标蛋白质-DNA 相互作用区域。输入量:对于细胞,通常,每个反应的量可以是 2 x 10 3 到 2 x 10 5 个细胞。为了获得最佳制备效果,细胞输入量应为 1 x 10 5 ,尽管从 EpiNext™ CUT&RUN Fast Kit 获得的修饰组蛋白测序数据只需 500 个细胞即可获得。对于从细胞或组织中分离的染色质,每个反应的量可以是 0.1 µg 至 5 µg 的染色质。为了获得最佳制备效果,染色质输入量应为 2 µg。起始材料:起始材料可以包括各种哺乳动物细胞样本,例如来自烧瓶或培养皿的培养细胞、原代细胞或从血液、体液、新鲜/冷冻组织(预制备的染色质)中分离的稀有细胞群,以及从整个细胞群和胚胎细胞中分选出的特定细胞等。抗体:抗体应为 ChIP 级,以便识别与 DNA 或其他蛋白质结合的蛋白质。如果您使用的抗体尚未经过 ChIP 验证,则应使用适当的对照抗体(例如抗 RNA 聚合酶 II、抗 H3K4me3 或抗 H3K27me3)来证明抗体适用于 ChIP。内部对照:此试剂盒中提供了阴性和阳性 ChIP 对照。注意事项:为避免交叉污染,请小心地将样品或溶液移入 PCR 管中。使用气溶胶屏障移液器吸头,并在液体转移之间始终更换移液器吸头。整个过程中都要戴手套。如果手套和样品接触,请立即更换手套。
用途:EpiNext™ CUT&RUN Fast Kit 旨在从低输入细胞/染色质中快速富集与蛋白质(组蛋白或转录因子)复合的特定 DNA,并通过 Illumina 平台的下一代测序或 qPCR 等其他方法识别或绘制体内蛋白质-DNA 相互作用。该试剂盒的创新工作原理、优化的协议和组件允许在最小化非特异性背景水平的情况下捕获目标蛋白质/DNA 复合物。捕获的 DNA 特别适合构建非条形码(单重)和条形码(多重)文库,以更少的偏差和更高的分辨率绘制目标蛋白质-DNA 相互作用区域。输入量:对于细胞,通常,每个反应的量可以是 2 x 10 3 到 2 x 10 5 个细胞。为了获得最佳制备效果,细胞输入量应为 1 x 10 5 ,尽管从 EpiNext™ CUT&RUN Fast Kit 获得的修饰组蛋白测序数据只需 500 个细胞即可获得。对于从细胞或组织中分离的染色质,每个反应的量可以是 0.1 µg 至 5 µg 的染色质。为了获得最佳制备效果,染色质输入量应为 2 µg。起始材料:起始材料可以包括各种哺乳动物细胞样本,例如来自烧瓶或培养皿的培养细胞、原代细胞或从血液、体液、新鲜/冷冻组织(预制备的染色质)中分离的稀有细胞群,以及从整个细胞群和胚胎细胞中分选出的特定细胞等。抗体:抗体应为 ChIP 级,以便识别与 DNA 或其他蛋白质结合的蛋白质。如果您使用的抗体尚未经过 ChIP 验证,则应使用适当的对照抗体(例如抗 RNA 聚合酶 II、抗 H3K4me3 或抗 H3K27me3)来证明抗体适用于 ChIP。内部对照:此试剂盒中提供了阴性和阳性 ChIP 对照。注意事项:为避免交叉污染,请小心地将样品或溶液移入 PCR 管中。使用气溶胶屏障移液器吸头,并在液体转移之间始终更换移液器吸头。整个过程中都要戴手套。如果手套和样品接触,请立即更换手套。
马遗传学和基因组学研究界有着长期的协同合作历史,致力于开发工具和资源来推动马生物学的发展。从 1995 年由 Dorothy Russell Havemeyer 基金会支持举办的第一届国际马基因图谱研讨会 ( Bailey, 2010 ) 开始,研究人员合作构建了全面的马连锁图谱 ( Guérin 等人, 1999, 2003; Penedo 等人, 2005; Swinburne 等人, 2006 )、辐射杂交和比较图谱 ( Caetano 等人, 1999; Chowdhary 等人, 2002 )、物理标记和 BAC 重叠群图谱 ( Raudsepp 等人, 2004, 2008; Leeb 等人, 2006 )、马的参考基因组 ( Wade 等人, 2009; Kalbfleisch 等人, 2018 ) 和基因分型阵列,以经济地绘制和研究马感兴趣的性状主人和饲养者(McCue 等人,2012 年;McCoy 和 McCue,2014 年;Schaefer 等人,2017 年)。为了延续基于社区的进步的传统,作为国际动物基因组功能注释 (FAANG) 联盟的一部分,一项新的集体努力于 2015 年启动,旨在对马的 DNA 元素进行功能注释(Andersson 等人,2015 年;Tuggle 等人,2016 年;Burns 等人,2018 年)。让人想起人类和小鼠的 ENCODE 项目(Dunham 等人,2012 年),FAANG 联盟的最终目标是注释家养动物物种基因组中的主要功能元素(Andersson 等人,2015 年)。具体来说,该联盟选择了四种组蛋白修饰来表征增强子(H3K4me1)、启动子和转录起始位点(H3K4me3)、具有活性调控元件的开放染色质(H3K27ac)和具有无法接近或受抑制的调控元件的兼性异染色质(H3K27me3)的基因组位置(Andersson 等人,2015;Giuuffra 和 Tuggle,2019)。最初的马 FAANG 努力通过对四个目标组蛋白标记进行染色质免疫沉淀测序(ChIP-Seq),在八个优先关注的组织(TOI)中确定了假定的调控区域(Kingsley 等人,2020)。在该研究中,整个马基因组中表征了超过一百万个假定的调控位点。马生物库中储存了 80 多种组织、细胞系和体液(Burns 等人,2018 年),因此有更多机会扩大注释工作的范围。为了充分利用生物库的优势,合作赞助
图2。DNMT3A募集后的基因表达动力学与数字记忆不一致。使用特定于特定于染色体的染色体整合的169个报告基因基因的示意图。哺乳动物170构成启动子(EF1A)驱动荧光蛋白EBFP2的表达。上游结合位点可实现靶向171的表观遗传效应子,该效应子与DNA结合蛋白RTETR融合在一起,PHLF或DCAS9。报告基因是由染色质绝缘子与其他基因分离出来的172。b实验概述,描述了瞬时转染到具有报告基因的173个细胞,基于转染水平的荧光激活的细胞分选,以及时间顺序的流量细胞仪174测量。根据面板中所示的175个实验时间表。显示的是四种不同水平的转染水平的报告基因176(EBFP2)的流量细胞仪测量值的分布。DNMT3A-DCAS9靶向启动子上游的5个目标位点,177用作炒GRNA目标序列作为对照(图se.2 a,b,表S3)。显示的数据来自来自3个独立重复的代表性178重复。d使用DNMT3A-179的流量细胞仪的单细胞基因表达测量值对应于面板C中所示的细胞(30天)。父母是指带有180个报告基因的未转染细胞。数据来自3个独立重复的代表性重复。平均值。e MedIP-QPCR和ChIP-QPCR 181分析DNMT3A-DCAS9和细胞分类后14天分析高水平的转染。分析了启动子区域182。显示的数据来自三个独立的重复。报道的是折叠变化及其平均值,使用183标准∆ ∆ c t方法相对于活性状态。错误条为S.D.DNMT3A-DCAS9的靶向位置为184至5个目标位点(GRNA)。使用炒GRNA目标序列(GRNA NT)作为对照。185 *p≤0.05,**p≤0.01,***p≤0.001,未配对的两尾t检验。根据面板中所示的实验时间线,krab抑制的基因表达动力学(PHLF-KRAB)186。所示是从四种不同水平的转染水平的187个报告基因基因(EBFP2)的流量细胞仪测量值的分布。每天测量一个独立的重复。显示的数据188来自3个独立重复。g重新激活细胞的百分比(400-10 5基因表达A.U.F.)对应于F. h Medip-QPCR面板中显示的189个细胞种群和CHIP-QPCR分析后6天对PHLF-KRAB和Cell 190排序进行了高水平的转染。分析是启动子区域的。数据来自三个独立的重复。191显示的是折叠变化,其平均值由标准∆ΔCT方法确定相对于活性状态。错误192条是S.D.平均值。p≤0.05,**p≤0.01,***p≤0.001,未配对的两尾t检验。参见SI图参见Si无花果。202i简化染色质修饰193当krab = 0,dnmt3a = 0,tet1 = 0时获得的电路图,而H3K9me3并未介导从头催化194 DNA甲基化的催化。SM.1 C. J顶图:(CPGME,H3K4ME3)对的剂量响应曲线。底部图:(DNMT3A,CPGME)对的剂量-195响应曲线。SM.1 D和SM.3。 k k的基因表达的概率分布196的系统,该系统由Si Tape Sm.1和Sm.3中列出的反应表示。 参见Si无花果。 SM.1 B和SM.2。 l概率197在t = 28天后的基因表达分布,如面板I所述获得。 在小组j和l中,将198 DNMT3A动力学建模为脉冲,随着时间的流逝会呈指数减小。 在我们的模型中,α'是通过抑制组蛋白修饰的DNA甲基化建立的归一化速率199,DNA甲基化擦除率200速率与激活组蛋白的擦除速率和激活的组蛋白修改速率之间的µ'是每个基准级别(ε')的级别(均为基础率(均))(招募)(招募)(招募)。修改。 参见SI图 SM.1 E和SM.3。SM.1 D和SM.3。k k的基因表达的概率分布196的系统,该系统由Si Tape Sm.1和Sm.3中列出的反应表示。参见Si无花果。SM.1 B和SM.2。 l概率197在t = 28天后的基因表达分布,如面板I所述获得。SM.1 B和SM.2。l概率197在t = 28天后的基因表达分布,如面板I所述获得。在小组j和l中,将198 DNMT3A动力学建模为脉冲,随着时间的流逝会呈指数减小。在我们的模型中,α'是通过抑制组蛋白修饰的DNA甲基化建立的归一化速率199,DNA甲基化擦除率200速率与激活组蛋白的擦除速率和激活的组蛋白修改速率之间的µ'是每个基准级别(ε')的级别(均为基础率(均))(招募)(招募)(招募)。修改。参见SI图SM.1 E和SM.3。SM.1 E和SM.3。
