主要版本(PE)保留了CRISPR的特定靶向靶向,但以RNA模型的形式采用了额外的货物,其中包含修改作为导向RNA(称为PEGARN)的连续估计。要求修饰蛋白质的情况,以使Cas9(H840A)仅裂解,而且还需要关联(PE1),或在其C端(PE2)合并与逆转录酶M-MLV(RT)(RT)(H840A)结束。使用Cas9(H840a)的使用(通常称为Nickase Cas9)避免形成双链DNA断裂(DSB),并简单地切割了PAM位点上游的DNA的非全面链。该表现出具有OH 3'基团的DNA瓣,该小组结合了RNA矩阵的引物(PBS)的联络位点,用作RT的底漆,该引物通过复制Pegarn的版本序列来扩展襟翼3'。尽管在热力学上,与5'未出版的皮瓣相比,杂交未发表的互补链的可能性较小,但内源性内核酸内核酸酶Fen1的固有偏好是消除5'碎片,导致3'编辑皮瓣的杂交导致了非常有效的基本版本。
图1。点击编辑的概述和开发。a,单击编辑器的示意图(CE),它是由RNA程序编程的DNA nickase,DNA依赖性DNA聚合酶和ssDNA绑扎域组成的融合蛋白(例如,嗯,核酸内切酶; Huhe)与导向RNA(GRNA)配对。Click-DNA(clkDNA)模板是一种单链DNA寡核苷酸,它编码底漆结合位点(PBS),聚合酶模板(PT)和Huhe识别位点B,从709序列产生的系统生成树47序列47,描绘了Huains多样性的小型元素,该序列是47个序列。量表表示序列之间的分数相关性。c,与ssDNA分子共价磷酸酪氨酸加合物形成共价磷酸酪氨酸加合物的示意图,其中huhe结合了识别顺序以引发单点样共轭反应。d,逐步点击编辑机制,涉及:(1)DNA目标位点释放非目标链(NTS)3'基因组瓣,(2)NTS laps plap杂交与clkDNA PBS,(3)NTS-NTS-NTS-NTS-PBS连接与DNA依赖性DNA Polimentsion(4)nts-pbs intthers(3) clkDNA的编码PT,(5)新合成的3'和天然基因组5'襟翼之间的平衡,以及(6)5'-flap裂解,导致编辑结合。e,在HEK 293T细胞中的点击编辑转染的示意图,涉及CE质粒的共转染(Porcine Circovirus 2(PCV2)Huhe Huhe与NSPCAS9(H840A)融合,并从e.coli dna Polymerase I(DNA Polymerase I(DNA Polymerase I(DNA Polymerase I(DNA Polymerase I(DNA))中, clkDNA和一个(或两个)GRNA质粒(S)。ngrna)针对非编辑链的目标编辑效率。f,g,使用DNMT1 GRNA和带有PBS13-PT12的clkDNA插入或读取突变(Indels)的 f,g, f,g, f,g, f,g, f,g, f,g,使用PBS13-PT12编码A +3- 5 cag deletion(使用A +49 nick; Panel f)或rnf2 grna a +rnf2 grna a +rnf2 grna a +rnf2 gkdna A +3-5 clkDNA A +49-PT12替换(带有+5“ 2b”刻度;面板G)。 CE1,CE(PCV2-NSPCAS9(H840A)-ECKLENOW),带有一个GRNA,以指导非目标链刻度; CE1.N2,CE1带有额外的grna来指导刻痕(即f,g, f,g, f,g, f,g, f,g, f,g,使用PBS13-PT12编码A +3- 5 cag deletion(使用A +49 nick; Panel f)或rnf2 grna a +rnf2 grna a +rnf2 grna a +rnf2 gkdna A +3-5 clkDNA A +49-PT12替换(带有+5“ 2b”刻度;面板G)。 CE1,CE(PCV2-NSPCAS9(H840A)-ECKLENOW),带有一个GRNA,以指导非目标链刻度; CE1.N2,CE1带有额外的grna来指导刻痕(即f,g, f,g, f,g, f,g, f,g,使用PBS13-PT12编码A +3- 5 cag deletion(使用A +49 nick; Panel f)或rnf2 grna a +rnf2 grna a +rnf2 grna a +rnf2 gkdna A +3-5 clkDNA A +49-PT12替换(带有+5“ 2b”刻度;面板G)。 CE1,CE(PCV2-NSPCAS9(H840A)-ECKLENOW),带有一个GRNA,以指导非目标链刻度; CE1.N2,CE1带有额外的grna来指导刻痕(即f,g, f,g, f,g, f,g,使用PBS13-PT12编码A +3- 5 cag deletion(使用A +49 nick; Panel f)或rnf2 grna a +rnf2 grna a +rnf2 grna a +rnf2 gkdna A +3-5 clkDNA A +49-PT12替换(带有+5“ 2b”刻度;面板G)。 CE1,CE(PCV2-NSPCAS9(H840A)-ECKLENOW),带有一个GRNA,以指导非目标链刻度; CE1.N2,CE1带有额外的grna来指导刻痕(即f,g, f,g, f,g,使用PBS13-PT12编码A +3- 5 cag deletion(使用A +49 nick; Panel f)或rnf2 grna a +rnf2 grna a +rnf2 grna a +rnf2 gkdna A +3-5 clkDNA A +49-PT12替换(带有+5“ 2b”刻度;面板G)。 CE1,CE(PCV2-NSPCAS9(H840A)-ECKLENOW),带有一个GRNA,以指导非目标链刻度; CE1.N2,CE1带有额外的grna来指导刻痕(即f,g, f,g,使用PBS13-PT12编码A +3- 5 cag deletion(使用A +49 nick; Panel f)或rnf2 grna a +rnf2 grna a +rnf2 grna a +rnf2 gkdna A +3-5 clkDNA A +49-PT12替换(带有+5“ 2b”刻度;面板G)。 CE1,CE(PCV2-NSPCAS9(H840A)-ECKLENOW),带有一个GRNA,以指导非目标链刻度; CE1.N2,CE1带有额外的grna来指导刻痕(即f,g,使用PBS13-PT12编码A +3- 5 cag deletion(使用A +49 nick; Panel f)或rnf2 grna a +rnf2 grna a +rnf2 grna a +rnf2 gkdna A +3-5 clkDNA A +49-PT12替换(带有+5“ 2b”刻度;面板G)。CE1,CE(PCV2-NSPCAS9(H840A)-ECKLENOW),带有一个GRNA,以指导非目标链刻度; CE1.N2,CE1带有额外的grna来指导刻痕(即
体细胞中双链断裂 (DSB) 的修复主要通过易出错的非同源末端连接完成,较少通过精确的同源定向修复完成,优先使用姐妹染色单体作为模板。在这里,果蝇系统使用同源染色体的完整序列对 DSB 和单链断裂 (SSB) 进行有效的体细胞修复,我们称这一过程为同源染色体模板修复 (HTR)。出乎意料的是,白色位点的 HTR 介导的等位基因转换对 Cas9 衍生的切口酶 D10A 或 H840A 诱导的 SSB 的响应比对完全活性 Cas9 诱导的 DSB 的响应 (20% 到 30%) 更有效 (40% 到 65%)。 Nickase 和 Cas9 引起的修复表型在发展时间(分别为晚期和早期)和不良诱变事件的产生(罕见和频繁)方面均有所不同。Nickase 介导的 HTR 代表了一种高效且出乎意料的等位基因校正机制,在基因编辑领域具有深远的潜在应用。
Prime编辑器(PES)可以在真核基因组中进行针对性的精确编辑,包括产生替代,插入和缺失。但是,尚未探索他们的全基因组规范。在这里,我们开发了基于Nickase的Digenome-Seq(Ndigenome-Seq),这是一种体外测定,它使用全基因组测序来识别由CRISPR诱导的单链断裂(群集经常间隔短的短质体重复序列)-CAS9(CAS9)(CAS9)(CRISPR与蛋白9)Nickase。我们使用ndigenome-seq筛选了潜在的基因组宽靶点位点Cas9 H840A Nickase(一种PE成分),该位点针对9个人类基因组部位。Then, using targeted amplicon sequencing of off- target candidates identified by nDigenome-seq, we showed that only five off-target sites showed de- tectable PE-induced modifications in cells, at fre- quencies ranging from 0.1 to 1.9%, suggesting that PEs provide a highly specific method of precise genome editing.我们还发现,通过工程化的Cas9变体(尤其是ESPCAS9和Sniper Cas9)将突变分解为PE,可以进一步改善人类细胞中的PE特异性。
《自然》杂志上发表的一篇文章( Anzalone 等人,2019 年)报道了一种基因组编辑实验方法的开发,该方法无需双链断裂 (DSB) 或供体 DNA (dDNA) 模板,即可介导人类基因组中所有可能的碱基到碱基的转换、“插入/缺失”和组合。Prime 编辑是一种新颖的基因组编辑方法,它利用一种比平常更长的单向导 RNA (gRNA),称为 Prime 编辑 gRNA (pegRNA),以及一种由 Cas9 H840A 切口酶与工程逆转录酶 (RT) 融合而成的融合蛋白。Prime 编辑被描述为“搜索和替换”碱基编辑技术,它在 gRNA 的延伸中提供所需的遗传构建体,然后使用 RT 酶将其转化为 DNA。与传统的 CRISPR-Cas 设备相比,新方法无需同时递送校正 DNA 模板,可执行所有可能的核苷酸替换(包括针对相当一部分遗传疾病的替换),解决插入/缺失引起的移码问题,并减少脱靶编辑。Prime 编辑是对现有 CRISPR 编辑系统的一个令人兴奋的新补充,在许多情况下甚至可能是一种改进。然而,Prime 编辑带来了新的挑战。克服这些障碍并在体内应用 Prime 编辑,将带来针对罕见遗传疾病的新型基因组编辑疗法。
背景CRISPR-CAS系统通过各种高级基因组编辑工具(例如核酸酶,基础编辑器和转座酶)演变,这些工具可以有效地产生靶向靶诱变[1]。尤其是,基于CRISPR系统开发的胞嘧啶碱基编辑器(CBE)和腺嘌呤碱基编辑器(ABE)可以在包括小鼠在内的各种生物体中有效地执行C•g至t•a和a•t至g•c替代基础[2,3] [2,3] [4,5]。最近,也报道了C c cg base Editor(CGBE1),使C可以在人类细胞中进行G基础转移的c转移[6]。然而,由于基因编辑限制(由于同源性定向修复(HDR))导致的基因编辑局限性(HDR),涉及一个或多个核苷酸插入,转化或截断的精确靶向突变仍然具有挑战性。Prime Editor(PE)是一种新的概念基因组编辑工具,包括带有Nickase Cas9(H840A)的融合蛋白和商业的Moloney Moloney鼠白血病病毒逆转录酶(M-MLV RT)。pe由编码所需的编辑序列[7]的Prime编辑指南RNA(PEGRNA)驱动。这种精心设计的基因组编辑系统允许靶向基础转化率的靶向诱变,以及小的插入和插入,而没有双链DNA断裂或供体DNA [7-10]。
摘要 Prime editing 是一种近期出现的精确基因组编辑方式,其多功能性为包括靶向基因疗法开发在内的广泛应用提供了前景。然而,其优化和使用的一个突出瓶颈是难以将大型 prime 编辑复合物递送到细胞中。在这里,我们证明将 prime 编辑构建体包装在腺病毒衣壳中可以克服这一限制,从而在转化和非转化的人类细胞中实现强大的基因组编辑,效率高达 90%。使用这种不依赖细胞周期的递送平台,我们发现 prime 编辑活动与细胞复制之间存在直接相关性,并揭示了准确的 prime 编辑事件与不需要的副产物之间的比例可能受靶细胞环境的影响。因此,腺病毒载体颗粒允许在人类细胞中有效地递送和测试 prime 编辑试剂,而与它们的转化和复制状态无关。本文整合的基因传递和基因编辑技术有望帮助研究在众多实验环境中以及最终在体外或体内治疗环境中进行主要编辑的潜力和局限性。简介基于序列可定制的向导 RNA (gRNA) 和 CRISPR 相关 (Cas) 核酸酶的可编程核酸酶是强大的基因组编辑工具 (1,2)。然而,除了脱靶诱变 (3-9) 之外,可编程核酸酶通常会因非法重组过程修复双链断裂 (DSB) 而产生复杂的靶等位基因破坏和大规模基因组重排 (10,11)。因此,最近的基因组编辑发展包括从 DNA 切割发展到基于切口 Cas 蛋白本身 (12–14) 的 DNA 非切割技术,或基于这些与 DNA 修饰部分融合的 RNA 可编程切口酶,例如碱基编辑器和最近的 prime editors (15,16)。Prime 编辑允许安装任何单个碱基对替换以及明确定义的小插入或删除,同时不需要 DSB 或供体 DNA 底物 (15)。Prime editors 由扩展的 gRNA 和 Cas9 H840A 切口酶组成,它们与工程逆转录酶 (RT) 融合,分别命名为 pegRNA 和 PE2 (补充图 S1A)。pegRNA 由 3' 端共价连接到编码目标编辑的 RT 模板和 RT 引物结合位点 (PBS) 的 gRNA 形成。位点特异性基因组 DNA 切口产生 3' 端 DNA 瓣,经 PBS 退火后,在 RNA 模板上引发 RT 介导的 DNA 合成。PE2 和 PE3。DNA 拷贝杂交至互补靶 DNA 后,编辑最终通过连续链解析反应整合到基因组中(补充图 S1B)。Prime 编辑有两种主要方式,即前者系统需要传递 PE2:pegRNA 复合物;后者依赖于这些复合物与传统 gRNA 一起转移。在 PE3 系统中,gRNA 指导的未编辑 DNA 链切口促进了使用编辑链作为修复模板(补充图 S1B)。尽管 Prime 编辑原理具有巨大的潜力和多功能性,但仍存在一些需要识别、仔细评估和解决的特定缺陷。大型的 Prime 编辑核糖核蛋白复合物由 ∼ 125 个核苷酸长的 pegRNA 和由 6.3 kb ORF 编码的 238 kDa 融合蛋白组成,这带来了巨大的生产和交付问题。事实上,生产足够数量的 >100 kDa 蛋白质尤其具有挑战性。此外,尽管病毒载体是最有效的基因组编辑工具递送系统之一 (17),但最常用的平台基于 ∼ 15 nm 腺相关病毒 (AAV) 颗粒,由于其包装容量有限(∼ 4.7 kb)(17),不适合转移全长 Prime 编辑序列。完全病毒基因删除的腺病毒载体(也称为高容量腺病毒载体),以下称为腺载体颗粒 (AdVP),聚集了一组有价值的特征,即; (i) 大包装容量(即高达 36 kb),(ii) 严格的游离性,(iii) 高遗传稳定性;(iv) 容易的细胞趋向性改变和 (v) 高效转导分裂和静止细胞 (17–21)。在这里,我们研究了定制这些 ∼ 90 nm 生物纳米粒子用于全长主要编辑组件的一次性转移的可行性和实用性,并且由于潜在或影响主要编辑结果的细胞过程基本上是未知的,利用后一个特性来研究细胞周期对这种位点特异性 DNA 修饰原理的作用。材料和方法 细胞
