•Kemmerer 1是一种混合动力植物,也是Terrapower的第一个Natrium反应器。natrium反应器使用液体钠冷却核心并产生能量,并结合硝酸盐熔融盐的能量储存。•可以说更独特的是美国核监管委员会(NRC)提前一个月完成了其安全草案评估(SE)。和最终SE的时间表已上升了两个月。•批评者可能会比计划提前一个月嘲笑一个项目。我将其视为政府努力简化批准过程的早期迹象。•仍然存在许多障碍,但许多关键项目 - 包括采购所需的专业高级低增添铀(Haleu) - 正在计划中。•Terrapower希望在2030年开始加载燃料,并于2031年开始商业操作。
Abbreviation Description BOO Build-Own-Operate CfD Contract for Difference CFPP Carbon Free Power Project CFR Code of Federal Regulations COL Construction and Operation License COP Conference of Parties CSF Cost Stabilization Facility DOE Department of Energy ECA Export Credit Agency EPC Engineering, Procurement, and Construction EXIM Export-Import Bank (United States) FIRST Foundational Infrastructure for Responsible Use of Small Modular Reactor Technology FOAK First-of-a-Kind HALEU High-Assay Low Enriched Uranium HTGR High Temperature Gas Reactor HWR Heavy Water Reactor IAEA International Atomic Energy Agency IBNI International Bank for Nuclear Infrastructure IEF International Energy Forum IRA Inflation Reduction Act LACE Levelized Avoided Cost of Energy LCOE Levelized Cost of Electricity LEU Low Enriched Uranium LFSCOE Levelized Full System Cost of Electricity LILW Low and Intermediate Level Waste LLW Low-Level Waste LLC Limited Liability Company LPO Loans Program Office LWR Light Water Reactor MDB Multilateral Development Bank MOX Mixed-oxide fuel MWe Megawatt of electricity MWh Megawatt hour NOAK Nth-of-a-Kind NPP Nuclear Power Plant NPT Nuclear Non-Proliferation Treaty NRC Nuclear Regulatory Commission (United States) OCC Overnight Capital Cost O&M Operation and Maintenance PRA Probabilistic Risk评估Purex铀提取
任务说明美国国家科学、工程和医学院将召集一个特设委员会,确定开发和演示未来探索任务所需的空间核推进技术的主要技术和项目挑战、优点和风险。事实证明,核推进可以为人类快速前往火星提供潜力,单程时间少于 9 个月,包括在火星表面停留的总往返时间少于 3 年。委员会还将确定每项技术的关键里程碑和顶层开发与演示路线图。此外,委员会还将确定成功开发每项技术可实现的任务。具体感兴趣的空间核推进技术包括:1. 高性能核热推进 (NTP),将氢推进剂加热到 2500K 或更高,产生至少 900 秒的比推力。 2. 核电推进 (NEP) 将热能转换为电能,为等离子推进器提供动力,用于高效快速地运输大型有效载荷(例如,功率水平至少为 1 MWe 且质量功率比(kg/kWe)远低于当前 NEP 系统水平的推进系统)。 行动计划 本研究应检查任务说明中所述的开发和演示 NTP 和 NEP 系统的优点和挑战。此项审查应考虑以下因素: 关键的技术和计划挑战和风险; 全尺寸系统级地面演示测试的选项; 放弃地面演示测试而进行飞行演示测试的优缺点; 开发一种燃料元件形式或其他反应堆子系统的前景,这些子系统可能对 NTP、NEP 和国防部战略能力办公室正在考虑开发的移动式 1-10 MW 功率反应堆中的至少两个是通用的; 选择高浓缩铀(HEU)而不是高含量低浓缩铀(HALEU)作为裂变材料所涉及的技术、计划和政策考虑; 美国国家航空航天局、能源部和工业界开发关键子系统技术以准备进行任务注入的能力(即技术就绪级别 6);以及 关键里程碑和顶层开发及演示路线图。
匹兹堡大学通过基于扫描分解的基于扫描模拟的反馈 - 馈线控制执行摘要摘要大大降低了激光粉池床融合添加剂制造的融化池和微观结构的变化:管理当地几次对激光粉末床融合(L-PBF)添加剂生产性能的影响是最高核心的一项优先级。因此,该程序的目的是开发一种基于仿真的反馈馈电控制方法,以维持整个L-PBF部分的熔体池和微观结构的一致性。特定的研究目标包括:(1)基于通过不同过程参数产生的测量熔体池维度开发经过实验验证的计算流体动力学(CFD)模型; (2)开发有效的混合CFD和FEM(有限元方法)模型,以模拟多轨,多层方案; (3)开发基于迭代模拟的反馈 - 馈线控制模型。该项目中的重点材料是基于镍的合金inconel 718,它广泛用于高温核应用中,例如核反应堆核心和热交换器。拟议的研究旨在解决核能社区中L-PBF进程的资格和更广泛采用的关键障碍。核芯和热交换器等核应用通常包含不同尺寸的几何特征,这会导致熔体池和微观结构在整个零件过程中差异很大。拟议研究中的关键创新是开发了混合CFD-FEM模拟模型,该模型为此基于反馈 - 反馈控制方法。通过使用准确的扫描分辨过程模拟,通过调整过程参数(激光功率和扫描速度)来最佳控制熔体池尺寸,预计熔体池和微观结构将在整个复杂部分中更加一致。通过减少新的L-PBF产品开发中昂贵的实验数量,可以以较低的成本进行熔体池和微观结构一致性的巨大改进,以更有效地执行资格。大多数L-PBF热过程模拟模型使用CFD或FEM;但是,前者是准确的,但在计算上非常昂贵,而后者是有效的,但不足以捕获熔体池的尺寸和温度,而随着局部几何形状的变化。在拟议的CIFEM(CFD施加的FEM)过程仿真模型中,瞬态热场是根据高保真CFD模拟计算的,并通过深度学习来推断。这些温度值是根据局部热环境所包含熔体池的局部FEM区域施加的,而其他地方的热传导则由FEM求解。开发的基于CIFEM的工艺模拟预计将是基于CFD的模拟效率的30-50倍,同时保持熔体池和温度场的预测准确性。使用CIFEM模型最佳地控制局部过程参数,预计熔体池尺寸的变化将减少50-70%,从而导致更一致的微观结构。因此,该项目将解决社区中的基本优先事项之一,并有助于促进更广泛的L-PBF程序在安全至关重要的核应用中。首席调查员:Albert C. TO,Albertto@pitt.edu