生态审计:使用再生纸的环境效益 使用由消费后废料制成的再生纸,在漂白过程中不使用氯或氯化合物,可带来可衡量的环境效益。我们很高兴地报告以下节约。• 使用 1399 磅消费后废料代替原生纤维可节省: • 8 棵树 • 760 磅固体废物 • 837 加仑水 • 1091 千瓦时电力(相当于:普通家庭 1.4 个月所需的电力) • 1382 磅温室气体(相当于:普通汽车行驶 1119 英里) • 6 磅 HAP、VOC 和 AOX 合计 • 2 立方码垃圾填埋场空间 使用环境纸张网络纸张计算器版本 3.2 进行环境影响估算。有关更多信息,请访问 www.papercalculator.org。
2021年8月27日,汤姆·比蒂(P.E.)Sr. Mechanical/Electrical Engineer Munson Medical Center 1105 Sixth Street Traverse City, Michigan 49684 Subject: Air Permitting Exemption Evaluation – Ethylene Oxide Sterilizer and Abator System Dear Mr. Beatty: As requested, Environmental Partners, Inc. has performed an air permitting and exemption evaluation for the Munson Medical Center (MMC) hospital facility located at 1105 Sixth Street, Traverse City, Michigan.本评估的目的是确定位于该设施的乙烷氧化物灭菌器和弃用系统(ETO灭菌器系统)是否要求根据密歇根州空气污染控制规则的规则201进行安装许可,或者该系统是否可以免除根据规则278到291的规则。此评估还可以满足密歇根州规则278a的要求。氧化乙烯灭菌器和弃用芒森医疗中心的描述安装了Andersen产品EO Gas 4灭菌器和弃用。该系统每周使用大约2至3次,以对无法接受常规高温灭菌技术进行的医疗设备进行消毒。要进行灭菌的物品放在灭菌装置的45升袋中,并处理3.5小时。灭菌单元的排气是通过悬办,其中99%的氧化乙烷(ETO)被去除。适用的规则联邦规则 - 发出危险空气污染物(HAP)的NESHAP来源受危险空气污染物(NESHAP)的国家排放标准进行监管。一个主要的HAP来源是固定来源,它发射或有可能每年发射10吨或更多个体HAP,或者有25个TPY或更多的HAP合并。区域来源是不是主要来源的固定来源。我们的理解是芒森医疗中心(MMC)是HAP的领域来源。
• SpinLaunch 首次动能发射测试 • Virgin Galactic 两次太空飞行 • C6 Launch 和 Ursa Major 测试液体火箭发动机 • Intuitive Machines 测试用于月球的激光辅助着陆系统 • Swift Engineering 进行高空伪卫星 (HAPS) 飞行 • UP Aerospace 以 LANL 为客户进行太空飞行 • AeroVironment Jump 20 和 AeroVironment TUAS 开始运营 • NM Tech、NMSU Atomic Aggies、美国西点军校发射火箭 • 虚拟太空港美洲杯 (2021 年 6 月),来自 16 个国家的 70 支队伍参加 • 为虚拟 NMSU STEM Outreach 制定课程计划,并在 NM 各地的教室提供虚拟参观和 STEM 演讲者 • 因与 LCPS 合作的 STEM 项目中的艺术整合而获得认可;与全球太空港联盟合作进行 STEM 国际空间站研究 • 与多位优秀的航空航天人才合作
该工厂在 2019 年仅使用油性涂料,自 2020 年 9 月以来几乎只使用水性和水基涂料。丹尼斯表示,该工厂自 2021 年初以来就没有使用过油性材料。水性涂料使用水作为溶剂来分散用于制造涂料的树脂。水性涂料含有主要由水组成的溶剂,释放的 VOC 较少。该工厂使用大容量低压 (HVLP) 喷枪涂抹油漆涂层,该喷枪有一个一加仑的压力罐用于输送。水基/水基涂料必须非常缓慢地涂抹。如果使用油性涂料,也使用 HLVP 喷枪涂抹,该喷枪包含一个 20 盎司的涂料杯。这些涂料中的 HAP 包括二甲苯、甲苯、乙苯和甲醇。
全球消费者数据流量的复合年增长率(CAGR)每年继续增长两位数。但是,在城市地区外部署纤维或细胞塔通常是不经济的。地静止轨道(GEO)卫星数十年来提供了全球覆盖范围;但是,从36,000公里的高度来看,它们的容量密度非常有限(例如,Mbps/km2)。通过GEO卫星的往返潜伏期也超过500毫秒,为交互式和其他延迟敏感的应用创造了糟糕的体验。对商业数据流量的未满足需求正在推动卫星操作员将新的卫星星座部署到非震荡轨道(NGSO)中。作为卫星的高度减少到中等地球轨道(MEO)的数量级(MEO),另一个数量级和低地球轨道(LEO),或者也许还有另一个数量级,而高空平台站(HAPS)飞机的范围更大的范围是供应范围的范围。 发表。然而,现在全球覆盖范围和非对位数运动所需的卫星数量显着增加,引起了许多新的操作挑战。
混合前,彻底搅拌或机械摇动基料(A 部分)至少 10 分钟,以确保所有固体完全分散。将一体积的催化剂成分(B 部分)添加到三体积的基料(A 部分)中。请勿使用其他颜色的催化剂成分(B 部分)。通过手动搅拌、油漆搅拌器或机械混合进行混合,以确保基料/催化剂混合物均匀。请勿摇动或机械混合混合材料超过 10 分钟。混合材料不需要稀释剂。聚氨酯可用的稀释剂有 MIL-T-81772B I 型* (IS-213)、VOC 豁免减量剂 (IS-256) 和低 HAPS 稀释剂 (IS-260)。不要添加稀释剂来尝试补偿超出其有效适用期的涂层。注意:在混合前,将所有材料放置在车间或机库中,环境温度在 13° 至 35°C(55° 至 95°F)之间,对油漆进行 24 小时的调节非常重要。混合前,油漆成分的最低温度应为 13°C (55°F)。
以及太空领域。我们探索新兴绿色技术,以促进增长和可持续发展,确保全球太空经济的未来。当我们在数字、太空探索和可持续发展的复杂交汇中探索时,有一个事实始终清晰:我们的使命根植于可持续发展。全球社会开发的最具影响力的技术是为每个人服务的。然而,即使过了 20 年,可持续发展目标也只实现了 12%,仍有超过 26 亿人无法上网,因此我们的行动势在必行。我们的承诺进一步体现在“CIRCLES”框架中,即尖端基础设施、创新、可再生能源、减少碳足迹、循环经济、数字化跨越式发展、平等与包容以及标准与战略指导。为了实现联合国可持续发展目标,我们还在探索一系列新兴技术,例如高空平台系统 (HAPS) 和非地面网络 (NTN),这些技术利用空间进行数字化转型,并将大大有助于连接全球仍无法上网的人们。我们今天的行动塑造了明天的格局。通过战略伙伴关系、创新解决方案和坚定不移的承诺,我们在环境管理和社会进步原则的指导下,踏上了通往更具包容性和可持续性未来的征程。
图 2-1 刚发射后的 Pegasus XL .............................................................................................. 2-1 图 2-2 Pegasus XL 配置的展开图 .............................................................................................. 2-2 图 2-3 Pegasus XL 的主要尺寸(仅供参考) ............................................................................. 2-3 图 2-4 以公制(英制)单位表示的典型 Pegasus XL 电机特性 ............................................................. 2-4 图 2-5 典型的姿态和制导模式序列 ............................................................................................. 2-5 图 3-1 Pegasus XL 任务剖面图,以 741 公里(400 海里)圆形极地轨道运行,载荷为 227 千克(501 磅米) ............................................................................................. 3-2 图 3-3 Pegasus XL 性能能力............................................................................................... 3-3 图 3-4 典型和最近的 Pegasus 轨道精度.............................................................................. 3-4 图 3-5 典型和最近的轨道精度........................................................................................ 3-4 图 4-1 有效载荷设计和测试的安全系数....................................................................................... 4-1 图 4-2 有效载荷测试要求.................................................................................................... 4-2 图 4-3 Pegasus 设计极限 L
AEO年度能量前景AR6第六次评估报告ATB年度技术基线BCF,BCF十亿立方英尺BCF/D十亿立方英尺每天coccs与碳捕获和储存的生物能源相比,碳捕获和储存BIL双党双方双方基础设施基础设施法律 Environmental Protection Agency EJ Exajoule (10 18 joules) EU European Union FECM Office of Fossil Energy and Carbon Management FID Final investment decisions FTA Free trade agreement GCAM Global Change Analysis Model GDP Gross domestic product GHG Greenhouse gas Gt Gigaton GtCO 2 Gigatons of carbon dioxide HAPs Hazardous air pollutants HEIDM Household Energy Impact Distribution Model IPCC Intergovernmental Panel on Climate Change IRA LCA生命周期评估LNG液化天然气MAM MAM宏观经济活动模块MWAT MEGAWATT-HOUR MJ MEGAJOULE MMBTU MMBTU MMBTU MMT THORMAL单位MMT MMT MIM MTCO MTCO 200万吨二氧化物二氧化碳