简历:Pr C. GAQUIERE 是 MC2 Technologies 的总经理兼联合创始人,该公司成立于 2004 年(95 人)。在此之前,Gaquiere 先生是里尔大学的全职教授,并在微电子和纳米技术研究所 (IEMN) 开展研究活动。研究主题涉及 1 至 500GHz 的 HEMT 和 HBT 器件的设计、制造、特性和建模。他从事过 GaAs、InP、变质 HEMT 和 GaN 活动。2003 年至 2007 年,他负责 Thales TRT 和 IEMN 共同实验室的微波特性部分,重点研究宽带隙半导体(GaN、SiC 和金刚石)。2007 年至 2018 年,他负责 ST 微电子和 IEMN 共同实验室的硅毫米波先进技术部分。Christophe Gaquière 是 150 多篇出版物和 300 多篇通讯的作者或合著者。
摘要 — 介绍了一种用于 300 GHz 左右高速通信的宽带三级伪差分 SiGe 互连双极晶体管 (HBT) 功率放大器 (PA)。该放大器采用实验性的 130 nm SiGe BiCMOS 技术制造,ft / f max 为 470/650 GHz。建议使用非对称耦合线变压器在所有放大器接口处进行器件电抗补偿,以促进宽带阻抗变换。该放大器的最大小信号功率增益为 23.0 dB,P sat /OP 1 dB 分别高达 9.7/6.7 dBm。它在小信号操作中显示 63 GHz(239-302 GHz)的 3-dB 带宽,在饱和时显示 94 GHz(223-317 GHz)的 3-dB 带宽。该放大器在 3 V 电源电压下消耗大约 360 mW,在 260 GHz 时产生 1.95% 的峰值功率附加效率 (PAE)。
NTT 300 GHz 频段 InP HBT 功率放大器和 InP-CMOS 混合相控阵发射器 Alyosha C. Molnar 康奈尔大学 超越 CMOS 的 N 路径混频器 Pascal Chevalier ST Microelectronics 用于有线、无线和卫星通信应用的 55 纳米柔性 SiGe BiCMOS 技术 Takuya Maeda 东京大学 ScAlN/GaN 电子设备应用特性 Trevor Thornton 亚利桑那州立大学 高功率器件的金刚石-BN 异质结:终极 HEMT ? Jim Sowers Maxar Space Infrastructure 商业通信卫星有效载荷中的 III-V 族半导体 Kenle Chen 中佛罗里达大学 用于下一代无线通信的负载调制平衡放大器 Bernhard Grote NXP 基站 GaN HEMT 和 GaN PA 技术进展 Lan Wei 滑铁卢大学 基于物理的单片 GaN 集成模型系列 Larry Dunleavy Modelithics Inc.,南佛罗里达大学
AI人工智能ASIC应用特定的集成电路AQNMOL先进的量子纳米材料和光电实验室B2B业务B2C业务向消费者CS COS复合半导体CSA CSA复合半导体应用CPU CPU中央处理单位CMOS辅助金属氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化型。dbt商业和贸易系科学系,创新和技术部DRAM动态随机记忆EDA电子设计自动化EIS企业投资计划ETRI电子和电信研究所欧洲欧盟欧盟FET FET国内生产总值HBM高带宽内存HBT异质结双极晶体管IC集成电路ICT信息和通信技术IIT工业Internet
Subramanian S. Iyer (Subu) 是加州大学洛杉矶分校的杰出教授,担任电气工程系 Charles P. Reames 特聘教授,并兼任材料科学与工程系教授。2023-4 年,他被任命为美国商务部国家先进封装制造计划主任,在那里他为国家封装势在必行奠定了基础战略。他是异构集成和性能扩展中心 (UCLA CHIPS) 的创始主任。在此之前,他是 IBM 研究员。他的主要技术贡献是开发了世界上第一个 SiGe 基 HBT、Salicide、电保险丝、嵌入式 DRAM 和 45nm 技术节点,用于制造第一代真正低功耗的便携式设备以及第一个商用中介层和 3D 集成产品。自加入加州大学洛杉矶分校以来,他一直在探索新的封装范式和设备创新,这些创新可能实现晶圆级架构、内存模拟计算和医学工程应用。他是 IEEE、APS、iMAPS 和 NAI 的研究员,也是
图S1:用于测量来自半导体晶体HHG的单光束二阶强度相关的强度相关测量设置的实验配置。超短脉冲通过半波板和偏振器(P),并在半导体样品上以镜头(F 1)聚焦,达到了与焦点处的材料内部原子场强度相当的电场强度。生成的辐射通过光圈(a)在空间上滤波,并沿主排放极化(P)轴选择。剩余的红外泵光子被过滤。使用镜头(F 2)将选定的HHG辐射朝向检测器臂进行编织。之后,H3和H5用两个二分性镜(DM 1和DM 2)在空间上分离。进一步的光谱过滤是通过窄带过滤器在HBT类似设置之前完成的,以将光子到达时间关联。最后,两个类似的镜头(F 3)将辐射聚焦于Spad芯片上。Spads以Geiger模式进行操作,并用作由数字转换器介导的开始停机测量的输入。
摘要 — 在本文中,我们介绍了一个完整的(硬件/软件)亚奈奎斯特速率(×13)宽带信号采集链,该链能够在 100 MHz – 2 的瞬时带宽内采集雷达脉冲参数。5 GHz,具有相当于 8 ENOB 数字化性能。该方法基于压缩感知(CS)的替代感知范式。硬件平台采用全集成 CS 接收器架构,称为随机调制预积分器 (RMPI),采用 Northrop Grumman 的 450 nm InP HBT 双极技术制造。软件后端由一种新颖的 CS 参数恢复算法组成,该算法无需执行全时域信号重建即可提取有关信号的信息。这种方法显著减少了检索所需信息所涉及的计算开销,这为在功率受限的实时应用中采用 CS 技术提供了一条途径。所开发的技术在由制造的 RMPI 物理测量的 CS 样本上得到验证,并给出了测量结果。详细描述了参数估计算法,并给出了物理硬件的完整描述。
8ijmf uif%jtusjdU n pvs dpnnvojujft boe fowjsponfou 3ftJefout ibwf btlfe btlfe gps b [fsp xbtuf qmbo qmbo uibu jefoujgjft joopwbujwf sbdujdft uispvhi gjobodjbm bttjtubodf jodfoujwft boe tvqqpsujoh sftpvsdft *o beejujpo xf dpmvujpot wfst boe njujhbuf uif sjtlt pg dmjnbuf dibohf cz cvjmejoh b npsf sftjmjfou dpnnvojuz *g xf xf tvdddffe jo bdijfw jo bdijfwjt juz hsffo kpct up gvsuifs tujnvmbuf pvs hspxjoh mpdbm fdpopnz
摘要 - 在此简介中,我们提出了一种逐步策略,以准确估计基于硅的多纤维双极晶体管结构中的纤维温度,从常规的调查中。首先,我们在给定的环境温度下提取几乎零动力的自加热电阻(r TH,II(t a))和热耦合因子(C IJ(t a))。现在,通过将叠加原理应用于几乎零功率的这些变量上,其中保留了热扩散方程的线性,我们估计有效的热电阻(r th,i(t a))和相应的修订后的效率温度t i(t a)。最后,Kirchhoff在T I(t a)上的trans形得出每个纤维处的真实温度(t i(t a,p d))。所提出的提取技术自动包括晶体管结构中存在的后端金属层和不同类型的沟渠的影响。该技术是针对具有不同发射极尺寸的双极晶体管的3D TCAD模拟结果验证的,然后应用于从stmicroelectronics B5T技术中从最先进的多纤维sige HBT获得的实际测量数据。可以观察到,原始测量数据在40 mW左右的叠加量低估了真正的纤维温度约10%。
在洛杉矶。在2023 - 4年,他担任美国商务部的任务,担任国家高级包装制造计划的主任,在那里他为国家包装命令制定了基础战略。他是异质整合和性能缩放中心(UCLA芯片)的创始主任。在此之前,他是IBM研究员。他的主要技术贡献是开发了世界上第一个SIGE基础HBT,盐盐,电气保险丝,嵌入式DRAM和45NM Technology节点,用于使第一代真正的低功率便携式设备以及第一个商业插入器和第一个商业插入器和3D集成产品。自加入UCLA以来,他一直在探索新的包装范式和设备创新,这些范式可能会启用晶圆尺度架构,内存模拟计算和医学工程应用程序。他是IEEE,APS,IMAPS和NAI的院士,也是IEEE EDS和EPS的杰出讲师。他是IIT孟买的杰出校友,并于2012年获得了IEEE DANIEL NOBLE奖章,并获得了2020年IMAPS Daniel C. Hughes Jr Memorial Award和2021年IMAPS杰出教育家奖。艾耶教授也是班加罗尔IISC的Makrishna Rao访问主教教授。
