BFOM = Baliga 功率晶体管性能品质因数 [K* µ *Ec 3 ] JFM = Johnson 功率晶体管性能品质因数(击穿,电子速度积)[Eb*Vbr/2 π ]
BFOM = Baliga 功率晶体管性能品质因数 [K* µ *Ec 3 ] JFM = Johnson 功率晶体管性能品质因数(击穿,电子速度积)[Eb*Vbr/2 π ]
摘要本文提供了BICMOS技术到THZ系统集成的总体图片,该图是在欧洲研究项目塔兰托(Taranto)中开发的。提出了欧洲高性能BICMOS技术平台,这些平台具有特殊的优势,可以解决亚毫升波和THZ系列中的应用。审查了技术过程的状态,并检查了整合挑战。对毫米波表征和建模进行了详细讨论,重点是谐波失真分析,功率和噪声测量,分别为190 GHz和325 GHz,以及最高500 GHz的S-参数测量值。活性(HBT)和被动组件的电气紧凑型模块的结果与基准电路块一起呈现,用于模型性验证。启用BICMOS的系统和应用程序,侧重于未来的无线通信系统和高速光传输系统,最终提出了1.55 tbit/s的净数据速率。
自 1950 年代以来,研究人员一直在研究晶体管的特性和行为,特别关注宽禁带发射极。发表在各种会议和期刊上的论文探讨了异质结构双极晶体管 (HBT)、集成电路和 Si/SiGe 外延基晶体管等主题。研究还检查了温度对晶体管性能的影响,包括在高达 300°C 的温度下的直流和交流性能。研究人员调查了各种材料系统,包括应变层异质结构及其在 MODFET、HBT 和激光器中的应用。研究了 SiGe HBT 中寄生能垒的行为,以及热电子注入对高频特性的影响。其他研究集中于渐变层和隧穿对 AlGaAs/GaAs 异质结双极晶体管性能的影响。已经开发出突变半导体-半导体异质结处隧道电流的解析表达式,并提出了异质结界面处热电子发射电流的新物理公式。本文讨论了有关异质结双极晶体管 (HBT) 的各种研究论文,这种半导体器件兼具双极晶体管和场效应晶体管的优点。这些论文涵盖的主题包括热电子发射、电荷控制模型、器件建模以及基极分级、合金化和应变对 HBT 性能的影响。研究探索了不同材料的使用,包括 GaAs/AlGaAs、InP、Si-Ge 合金和应变层异质结构。这些论文讨论了了解这些材料的电子特性(例如有效质量、带隙和价带不连续性)的重要性。文章还涉及 HBT 中的非平衡电子传输,这对高频性能至关重要。研究人员研究了各种生长技术,包括分子束外延 (MBE) 和化学气相沉积 (CVD),以创建高质量的 HBT 器件。研究论文中的一些主要发现和结论包括:* 了解异质结材料电子特性的重要性* 应变对 HBT 性能和器件特性的影响* 需要先进的生长技术,如 MBE 和 CVD,以创建高质量的 HBT 器件* Si-Ge 合金和应变层异质结构在提高 HBT 性能方面的潜力总体而言,本文中介绍的论文展示了正在进行的研究工作,旨在提高异质结双极晶体管的性能和特性。本文讨论了有关硅锗 (Si/Si1-x Gex) 异质结构的各种研究和研究论文,重点介绍了它们的特性及其在微电子器件中的应用。一项研究使用导纳谱分析了由 Si/Si1-x Gex 异质结构制成的 MOS 电容器。另一篇论文研究了在硅衬底上生长的无应变和相干应变 Si1- x Gex 的电子漂移迁移率。文章还讨论了用于高频应用的碳掺杂 SiGe 异质结双极晶体管 (HBT) 的开发,以及针对低温操作的 HBT 技术的优化。此外,研究人员还探索了应变和重掺杂对 Si/Si1-x Gex 合金间接带隙的影响。论文还涉及各种主题,例如外延 Si 和 SiGe 基双极技术的设计和优化、UHV/CVD SiGe HBT 中集电极-基极结陷阱的影响以及 Ge 分级对 SiGe HBT 偏置和温度特性的影响。总体而言,研究重点是了解 Si/Si1-x Gex 异质结构在微电子器件(包括 HBT 和其他半导体技术)中的特性和应用。本文讨论了 SiGe 基双极晶体管和 III-V 异质结双极晶体管 (HBT) 研究的进展。目标是优化这些器件以用于高性能电子应用,包括高速数字集成电路、模拟电路、微波集成电路和 RF 器件。1993 年至 2002 年期间发表的研究文章探讨了 SiGe HBT 的各个方面,例如针对高电流密度的优化、屏障效应、渡越时间建模和紧凑的电流-电压关系。这些研究旨在提高这些器件的性能和效率。另一个研究领域侧重于 III-V HBT,包括基于 GaAs 的 HBT、AlGaN/GaN HBT 和 GaN HBT。目标是开发用于微波应用的新技术并克服建模和模拟这些器件的挑战。这些研究还调查了不同生长技术的使用,例如金属有机化学气相沉积 (MOCVD),并探索 AlGaN/GaN HBT 选择性区域生长的潜力。总体而言,该研究旨在突破 SiGe 基双极晶体管和 III-V HBT 的可能性界限,从而开发出适用于广泛应用的高性能电子设备。过去几十年来,异质结双极晶体管 (HBT) 的研究得到了广泛的开展。各种研究都探索了它们的潜在应用、优势和局限性。在 2001 年发表在 IEEE Transactions on Electron Devices 上的一篇文章中,研究人员讨论了 HBT 在高频应用中的能力。同一出版物还介绍了 Shigematsu 等人在 1995 年的另一项研究,该研究提出了一种具有改进特性的自对准 InP/InGaAs HBT 的新设计。此外,Low 等人在 1999 年发表的一篇文章。固态电子学杂志探讨了 InGaP HBT 技术在射频和微波仪器中的应用。研究人员强调了它的潜在优势,包括与硅双极晶体管相比更快的开关速度。一些研究也集中于 HBT 的设计和制造。Gao 等人在 1992 年发表在 IEEE 电子器件学报上的一篇文章介绍了一种用于功率应用的异质结双极晶体管设计。在同一期刊上发表的另一项研究中,Gao 等人 (1991) 研究了发射极镇流电阻设计和 AlGaAs/GaAs 功率 HBT 的电流处理能力。微波多指 HBT 中的崩塌现象也得到了广泛的研究。Liu 等人 (1993 年和 1994 年) 在 IEEE 电子器件学报上发表的研究检查了高功率密度对这些器件中电流增益崩塌的影响。此外,Chou 和 Ferro 在 1997 年的会议论文集中概述了异质结双极晶体管,重点介绍了它们的应用和优势。研究人员探索了用于红外光子探测的先进半导体器件概念和技术,旨在提高 III-V 器件的性能。研究人员还致力于通过引入碳掺杂基极来提高 AlGaAs/GaAs 异质结双极晶体管的预期寿命。该研究讨论了工艺技术对自对准 HBT、栅极定义和亚微米栅极长度干蚀刻制造方案的影响。此外,还进行了高温偏压应力测试,以评估具有台面蚀刻结构的 HBT 的可靠性,揭示了它们在各种工作条件下性能的潜在改进。本研究讨论了工艺技术对自对准 HBT、栅极定义和亚微米栅极长度干蚀刻制造方案的影响。此外,还进行了高温偏压应力测试,以评估具有台面蚀刻结构的 HBT 的可靠性,揭示了其在各种操作条件下性能的潜在改进。本研究讨论了工艺技术对自对准 HBT、栅极定义和亚微米栅极长度干蚀刻制造方案的影响。此外,还进行了高温偏压应力测试,以评估具有台面蚀刻结构的 HBT 的可靠性,揭示了它们在各种操作条件下性能的潜在改进。
过去几年已经看到了SIGE异质结双极晶体管(HBT)技术的显着进步。今天,Sige-Base HBTS的使用越来越多地在无线和高速数字通信中流行。在这些晶体管中,带隙分级产生了一个漂移场,这有助于少数载体通过基座运输。这一事实已被用来实现具有高切割频率F t(超过100 GHz)的设备。在文献[1-5]中广泛研究了SIGE HBTS中的基本运输时间的GE PROFE和BASE掺杂量的设计。三角形的ge profle在优化底座中的带隙分级有效,以最大程度地减少t b sige(基本运输时间 - f t中的主要因素)。由于已经检查了指数碱基的掺杂掺杂率和类似的基础[4,5],我们的目的是对底座中掺杂剂的高斯分布进行处理。在常规设备中,这种分布导致基本运输时间降低[6],因此估计其对SIGE HBT的影响是有用的。此外,在实际晶体管中,掺杂填充物比高斯分布更接近于指数。对SIGE HBT的两个重要参数进行了建模,即基本运输时间和当前增益。模型不仅是高掺杂效应的,而且还依赖于di usion系数的依赖性对漂移轨道和沿基数的可变GE浓度。基础中的两种类型的GE分布进行了检查:三角形的一个和框一[4,7]。
IHP 为研究合作伙伴和客户提供其强大的 SiGe:C BiCMOS 技术和特殊集成 RF 模块。这些技术特别适合更高 GHz 频段的应用(例如无线、宽带、雷达)。它们提供截止频率高达 500 GHz 的集成 HBT,包括互补设备。• 适用于光纤、航空航天、宽带和无线通信、雷达、数据中心、测量设备、太赫兹成像、电子健康领域的产品
课程说明微电动设备和电路设计师长期以来一直在寻求结合带隙工程提供的卓越运输特性和设计灵活性(如在GAAS和INP等复合半导体中常规实践),以及高产量和较低的常规硅(SI)制造成本。随着介绍外延硅果(Sige)合金,这一梦想终于成为现实。SIGE异质结双极晶体管(SIGE HBT)是在SI材料系统中实现的第一个实用带段的实用设备。The first functional SiGe HBT was demonstrated in 1987, and the technology has matured rapidly, at present achieving a unity-gain cutoff frequency above 700 GHz, circuit delays below 2 picoseconds, and integration levels sufficient to realize a host of record-setting digital, analog, RF, mm-wave, and sub-mm-wave circuits.自然兼容,将SIGE HBT与最佳的SI CMO组成以形成SIGE HBT BICMOS技术,这显然适合于解决新兴的性能受限,高度集成的系统,目前正在商业和国防部门在全球范围内追求。
•2024年9月:添加了年度BH健康考试信息,为塔夫茨健康成员一起,对DOS有效。1,2024•2024年8月:为Tufts Health Ritogether成员添加了CCBHC信息和资源,对DOS有效,从2024年10月1日开始•2024年6月:年度政策审查;删除了RitogeTher成员HBTS服务的事先授权内容; administrative updates • April 2024: added billing information for MHCs providing urgent care services for Tufts Health Together members, effective for DOS on or after March 1, 2024 in accordance with MCE Bulletin 108 • March 2024: Added billing information for BH wellness exams for Tufts Health Direct members, effective for DOS on or after March 31, 2024 • August 2023: Annual policy review;添加了H9修饰符的计费说明,可在2023年7月1日或之后对Tufts Health Ritegether成员有效; added billing requirements and resources for Community Support Services for Tufts Health Together and Tufts Health Unify members • April 2023: Clarified screening and assessment codes T1023 and T1028 no longer need prior authorization beginning April 19, 2023, in accordance with RI EOHHS guidance • February 2023: Annual code updates • December 2022: Added billing instructions for BH crisis intervention services rendered in emergency departments, effective for DOS on或2023年1月3日之后;添加了CBHC的补偿信息,可在2023年1月1日或之后有效
NC州立大学(NCSU)在电气和计算机工程部门的III-V半导体领域以及材料科学与工程学部门内有几个博士后位置空缺。博士后研究职位在以下研究领域提供:III-硝酸盐电子和光电设备的异质整合,制造和表征:设计和开发下一代异质整合III-nitride Optoelectronic和电子设备。位置将包括电子和光电设备结构的设备设计,制造,表征和测试,以实现宽带的带隙电子光功能IC。强烈优选III-N设备设计和制造方面的先前经验。III二硝酸RF设备设计,制造和表征(Pavlidis):设计和模型的新型RF设备,使用宽带gap(WBG)和超宽的带隙(UWBG)III-硝酸盐用于下一代功率放大器。制造这些设备,考虑了通过晶圆粘结整合异质材料以增强性能/功能的机会。执行设备和测试结构的DC-TO-RF表征,将材料属性与设备行为联系起来。优先使用III-V HEMT和/或HBT的事先经验。III-Nitride Epitaxy and Materials Characterization (Sitar): MOCVD growth of III-nitrides (primarily) on native substrates, III-nitride structures (heterojunctions, MQWs, graded layers, lateral polarity structures) for electronic and optoelectronic devices, materials characterization (XRD, AFM, XPS, SEM, TEM, PL, electrical).需要在III-NINRIDE或相关的宽带隙半导体方面的经验。需要强大的物理背景。