摘要 - 传统数据驱动的质量预测方法主要是由静态模型构建的,使用慢速采样率的清洁数据,使得dynamics未使用。为了充分利用以快速采样率收集的动态过程数据,本文提出了一种新型的基于深度学习的鲁棒双率动态数据建模方法,以质量预测动态非线性过程。首先提出了一种新的动态数据降级性对抗归因网络,以解决动态过程数据之间缺少的价值插补。然后,建立了一个新的提示卷积神经网络(HCNN),用于基于双速率数据的质量预测。提出的HCNN将通道扩展的信息提示机理纳入卷积神经网络中,以使用明确的时间和可变信息提取动态特征。最后,使用DOW蒸馏过程数据集和北京多站点空气质量数据集对所提出的方法进行了验证。
现实世界的视觉数据具有固有的层次结构,可以在双曲线空间中有效地代表。双曲神经网络(HNN)是在此类空间中学习特征表示的有前途的方法。然而,计算机视觉中的当前HNN依赖于欧几里得主链,并且仅在任务头中的双曲线空间唯一的项目功能,从而限制了它们充分利用双曲线几何的好处的能力。为了解决这个问题,我们提出了HCNN,这是一种全均匀的卷积神经网络(CNN),专为计算机视觉任务而设计。基于Lorentz模型,我们概括了CNN的基本组合,并提出了卷积层,批准归一化和多项式逻辑回归的新型公式。对标准视频任务的实验证明了在混合和完全双曲的设置中我们的HCNN框架的有希望的性能。总体而言,我们认为我们的贡献为开发更强大的HNN提供了基础,这些HNN可以更好地代表图像数据中发现的复杂结构。我们的代码可在https://github.com/kschwethelm/hyperboliccv上公开获取。