蛋白水解靶向嵌合体 (PROTAC) 是一种新兴的癌症靶向治疗方法,但由于细胞靶向性和穿透性较差以及体内不稳定性,PROTAC 的广泛临床应用受到限制。为了克服这些问题并提高 PROTAC 药物的体内疗效,开发了基于微流控液滴的电穿孔 (µDES) 作为一种新型细胞外囊泡 (EVs) 转染系统,可实现高效的 PROTAC 装载和体内有效递送。我们之前开发的 YX968 PROTAC 药物已显示出对 HDAC3 和 8 的选择性降解,通过双重降解有效抑制乳腺肿瘤细胞系(包括 MDA-MB-231 三阴性乳腺癌 (TNBC) 系)的生长,而不会引起整体组蛋白高乙酰化。在本研究中,我们证明基于 µDES 的 PROTAC 在 EVs 中的装载显着增强了 PROTAC 药物在 TNBC 乳腺肿瘤小鼠模型中的体内治疗功能。 NSG 小鼠已建立 MDA-MB-231 肿瘤,并通过腹膜内注射 EVs 进行肿瘤抑制研究,结果显示 HDAC 3 和 8 降解效率和肿瘤抑制率明显高于仅使用 PROTAC 的组。收集肝脏、脾脏、肾脏、肺脏、心脏和脑进行安全性测试,结果显示毒性有所改善。PROTAC 药物的 EV 递送提高了药物在体内的稳定性和生物利用度、可运输性和药物靶向能力,填补了 PROTAC 治疗功能在体内和临床转化中当前发展的重要空白。这种基于 EV 的新型药物转染和递送策略可应用于各种疗法,以增强体内递送、功效和安全性。
黑色素瘤是最致命的皮肤癌。在早期阶段,可以单独通过手术安全治疗。但是,自2011年以来,通过新的有效疗法的黑色素瘤治疗了一场重要的革命。针对检查点抑制剂的靶向治疗和免疫疗法改变了这种疾病的史。迄今为止,超过一半的晚期黑色素瘤患者在5年时还活着;尽管有这一突破,但大约一半的患者仍然对治疗没有反应。由于这些原因,需要新的治疗策略来扩大可以从免疫疗法或与靶向疗法结合结合使用的患者数量。当前的研究旨在防止原发性和获得性抗性,这两者都导致约50%的患者的治疗失败。这可以提高可用药物的有效性,并允许评估新组合和新靶标。所研究的主要途径和分子是IDO抑制剂,TLR9激动剂,STING,LAG-3,TIM-3,HDAC抑制剂,Pegypated IL-2(NKTR-214),GITR和腺苷途径抑制剂,目前是3000次试验的抑制剂(等等)。其他有希望的策略是癌症疫苗和溶瘤病毒。另一种方法是将免疫细胞(DC,T细胞和NK细胞)隔离和去除患者的血液或肿瘤中,添加特定的基因片段,与生长因子中的培养物扩展,并重新接口到同一患者中。tils,TCR基因转移和CAR-T治疗遵循这种方法。在本文中,我们概述了黑色素瘤疗法的当前状态,选择治疗的临床原理以及新的免疫疗法方法。
组蛋白去乙酰化酶抑制剂已被研究作为癌症和其他疾病的潜在治疗剂。已知 HDI 可促进组蛋白乙酰化,从而导致开放染色质构象并通常增加基因表达。在之前的研究中,我们报告了一组基因,特别是那些由超级增强子调控的基因,可以被 HDAC 抑制剂拉格唑抑制。为了阐明拉格唑抑制基因的分子机制,我们进行了转座酶可及染色质测序、ChIP-seq 和 RNA-seq 研究。我们的研究结果表明,虽然拉格唑治疗通常会增强染色质的可及性,但它会选择性地降低一组超级增强子区域的可及性。这些基因组区域在拉格唑存在下表现出最显著的变化,富含 SP1、BRD4、CTCF 和 YY1 的转录因子结合基序。 ChIP-seq 分析证实 BRD4 和 SP1 在染色质上各自位点的结合减少,特别是在调节基因(如 ID1、c-Myc 和 MCM)的超级增强子上。拉格唑通过抑制 DNA 复制、RNA 加工和细胞周期进程发挥作用,部分是通过抑制 SP1 表达来实现的。shRNA 消耗 SP1 可模拟拉格唑的几种关键生物学效应并增加细胞对该药物的敏感性。针对细胞周期调控,我们证明拉格唑通过干扰中期染色体排列来破坏 G/M 转换,这种表型在 SP1 消耗时也观察到。我们的结果表明,拉格唑通过抑制超级增强子上的 BRD4 和 SP1 发挥其生长抑制作用,导致细胞抑制反应和有丝分裂功能障碍。
原代人滋养细胞(TSC)和来自人类多能干细胞(HPSC)的TSC可以在体外对胎盘过程进行模拟。然而,HPSC与TSC的分化涉及的多能状态和因素对TSC的分化知之甚少。In this study, we demonstrate that the primed pluripotent state can generate TSCs by activating pathways such as Epidermal Growth Factor (EGF) and Wingless-related integration site (WNT), and by suppressing tumor growth factor beta (TGFβ), histone deacetylases (HDAC), and Rho-associated protein kinase (ROCK) signaling pathways, all without the addition of exogenous骨形态发生蛋白4(BMP4) - 我们称为TS条件的条件。我们使用时间单细胞RNA测序表征了此过程,以将TS条件与单独使用BMP4激活或与Wnt抑制结合使用的分化方案进行比较。TS条件始终产生一种稳定的增殖细胞类型,该类型紧密模仿了头三年的胎盘细胞增多质细胞,以内源性逆转录病毒基因的激活和缺乏羊膜表达为标志。这是在多个细胞系中观察到的,包括各种引发诱导的多能干细胞(IPSC)和胚胎干细胞(ESC)系。启动衍生的TSC可以在30多个通道中增殖,并进一步指定为多核合胞素粒细胞和跨性滋养细胞细胞。我们的研究表明,在TS条件下,引发HPSC与TSC的分化触发了TMSB4X,BMP5/7,GATA3和TFAP2A的诱导,而无需通过幼稚的
摘要:Trichostatin A(TSA)是一种代表性的组蛋白脱乙酰基酶(HDAC)抑制剂,该抑制剂通过调节细胞中的染色质重塑来调节表观遗传基因的表达。调查TSA对染色质DE稳态的调节是否会影响Cas9蛋白 - 蛋白 - 核核糖核蛋白(RNP)的效率提高,从植物细胞中检查了基因组编辑的基因组,使用生菜和烟草原子量进行了多种浓度,在几次浓度的TSA治疗后(tsa)(0.1)(0.1)(0.1和10,0.1)。RNP从原生质体递送。有趣的是,在莴苣原生质体中,TSA处理中SOC1基因的indel频率是DMSO处理的3.3至3.8倍。尽管没有太大差异,但糖基因原生质体中SOC1基因的indel频率的增加发生在浓度依赖性的方式中。类似于生菜,TSA在PDS基因组编辑期间使用烟草原生质体以浓度依赖性方式将indel频率提高了1.5至1.8倍。MNase测试清楚地表明,使用TSA处理的染色质可及性高于DMSO治疗的染色质。此外,TSA处理显着提高了生菜原生质体的组蛋白H3和H4乙酰化水平。QRT-PCR分析表明,通过TSA处理,增加了细胞分裂相关基因的表达(LSCYCD1-1,LSCYCD3-2,LSCYCD6-1和LSCYCU4-1)。这些发现可能有助于提高CRISPR/CAS9介导的基因组编辑的效率。此外,这可以应用于使用带有植物原生质体的CRISPR/CAS9系统开发有用的基因组编辑的作物。
•将毛毛虫饲养到蝴蝶上,持续了多代。•通过微分解从卵巢,脂肪体和神经系统中分离组织。•探索使用RNASEQ的天然植物产物和药物HDAC抑制剂对酶活性和基因表达的影响。•记录植物天然产品和药物减缓发育和衰老的潜力。•测试诱导表型的跨代表观遗传遗传的潜力。•探索气候变暖对这些“表观遗传武器”有效性的影响。申请人应在上层(200级或更高)完成至少一个生物学,化学或环境科学课程。学生应该在夏季生物信息学训练营期间学习一些生物信息学技术,包括基本编程。这些是在5月28日开始的迪金森学院校园的8周付费职位。研究学生每周赚取$ 450(8周的3600美元),并在校园内免费住房。符合条件,学生必须在2023年夏季成为现任迪金森学生。将以下信息通过电子邮件发送给Arnold教授 - arnoldt@dickinson.edu - 在星期五2/14/25之前。申请书应长1页,包括您的姓名,电子邮件,专业和小调,预期的毕业月和年份,以及在生物学,化学,数学,计算机,计算机,计算机科学和/或环境科学领域所录的课程或正在进行的课程清单。此外,请(a)分享您为什么要在今年夏天进行基于实验室的研究,(b)描述您未来五年的职业目标,以及(c)列出您开发或希望开发的任何相关实验室经验和相关技能。
- )向肠上皮细胞(IEC)提供70%的能量,支持紧密结的蛋白质形成,诱导炎性细胞因子的产生,并抑制组蛋白脱乙酰基酶(HDAC)。丁酸酯也与脑创伤的恢复,痴呆症的改善,减轻自身免疫性脑炎以及几种肠道疾病有关。低水平的SCFA与高血压,心血管疾病(CVD),中风,肥胖和糖尿病有关。顺式 - 棕榈酸(C 16 H 30 O 2),一种单不饱和脂肪酸(MUFA),可提高胰岛素敏感性并降低发生CVD的风险。脂肪棕榈酸降低了促炎性细胞因子IL-1β(pro-IL1β),肿瘤坏死因子α(TNF-α)和异亮氨酸6(IL-6)的表达。通过饮食提供多不饱和脂肪酸(PUFAS),例如Omega-3和Omega-6。环氧合酶(COX)和脂氧酶(LOX)将PUFAS的转化导致产生抗炎的前列腺素和白细胞素。亚油酸(La,C 18 H 32 O 2)的氧化是一种omega-6必需脂肪酸,导致形成13-氢氧基八氧化脱发酸(13-Hpode,C 18 H 32 O 4),从而诱导炎性细胞因子。Omega-3 Pufas,例如eicosapentaenoic Acid(EPA,C 20 H 30 O 2)和Docosahecahexaenoic Acid(DHA,C 22 H 32 O 2),较低的触发器IDE水平,降低了出现某种癌症,阿尔茨海默氏病和痴呆症的风险。在这篇综述中,讨论了SCFA,MUFA,PUFA和饱和脂肪酸(SFA)对人类健康的重要性。研究了脂肪酸在疾病治疗中的使用。
双相情感障碍(BD)的特征是极端情绪波动,从躁狂/易感发作到抑郁发作。这些发作的严重程度,持续时间和频率可能会在个人之间差异很大,从而显着影响生活质量。患有BD的人几乎一生都经历了情绪症状,尤其是抑郁症,以及相关的临床维度,例如Anhedonia,疲劳,自杀,焦虑和神经疗法症状。持续的情绪症状与过早死亡率,加速衰老和抗药性抑郁症患病率升高有关。最近的努力扩大了我们对BD神经生物学的理解以及可能有助于跟踪临床结果和药物开发的下游靶标。然而,作为一种多基因障碍,BD的神经生物学很复杂,涉及几个细胞器和下游靶标(前,后,突触外和突触外)的生物学变化,包括线粒体功能障碍,氧化应激,氧化应激,单氨基氨基疗法和谷胱甘肽症状系统的变化,以及较低的神经元素级别,并改变了神经际较低的系统,并改变了神经胰蛋白质的变化。因此,该领域已朝着确定更精确的神经生物学靶标,而神经生物学目标又可能有助于开发个性化的方法和更可靠的生物标志物来进行治疗预测。在情绪障碍中还测试了针对神经传递以外的神经生物学途径的多种药理学和非药物方法。本文回顾了BD中非规范途径中不同神经生物学靶标和病理生理发现,这些发现可能会提供支持药物开发并识别新的,临床上相关的生物学机制的机会。这些包括:神经炎症;线粒体功能;钙通道;氧化应激;糖原合酶激酶3(GSK3)途径;蛋白激酶C(PKC);脑衍生的神经营养因子(BDNF);组蛋白脱乙酰基酶(HDAC);和嘌呤能信号通路。
双相情感障碍(BD)的特征是极端情绪波动,从躁狂/易感发作到抑郁发作。这些发作的严重程度,持续时间和频率可能会在个人之间差异很大,从而显着影响生活质量。患有BD的人几乎一生都经历了情绪症状,尤其是抑郁症,以及相关的临床维度,例如Anhedonia,疲劳,自杀,焦虑和神经疗法症状。持续的情绪症状与过早死亡率,加速衰老和抗药性抑郁症患病率升高有关。最近的努力扩大了我们对BD神经生物学的理解以及可能有助于跟踪临床结果和药物开发的下游靶标。然而,作为一种多基因障碍,BD的神经生物学很复杂,涉及几个细胞器和下游靶标(前,后,突触外和突触外)的生物学变化,包括线粒体功能障碍,氧化应激,氧化应激,单氨基氨基疗法和谷胱甘肽症状系统的变化,以及较低的神经元素级别,并改变了神经际较低的系统,并改变了神经胰蛋白质的变化。因此,该领域已朝着确定更精确的神经生物学靶标,而神经生物学目标又可能有助于开发个性化的方法和更可靠的生物标志物来进行治疗预测。在情绪障碍中还测试了针对神经传递以外的神经生物学途径的多种药理学和非药物方法。本文回顾了BD中非规范途径中不同神经生物学靶标和病理生理发现,这些发现可能会提供支持药物开发并识别新的,临床上相关的生物学机制的机会。这些包括:神经炎症;线粒体功能;钙通道;氧化应激;糖原合酶激酶3(GSK3)途径;蛋白激酶C(PKC);脑衍生的神经营养因子(BDNF);组蛋白脱乙酰基酶(HDAC);和嘌呤能信号通路。
图2饮食模式调节肠道干细胞(ISC)功能。(a)禁食,快速恢复和卡路里限制。禁食通过启动脂肪酸氧化(FAO)程序来增强ISC功能,并取决于肉碱棕榈酰转移酶1A(CPT1A)。其他调节器(例如PRDM16和HNF4A/G)也通过调节粮农组织来调节ISC。快速恢复后刺激MTORC1并通过多胺代谢程序激活蛋白质合成。结果,ISC增殖和肿瘤发生都升高。在卡路里限制期(CR)期间,由于雷帕霉素复合物1(MTORC1)的机理靶标降低,paneth细胞旁分泌因子循环ADP核糖(CADPR)。CADPR进入ISC,并通过SIRT/MTORC1-S6K1信号传导促进ISC和Paneth细胞的增殖。CR还增强了储备ISC中的DNA损伤性,从而保留了再生能力。(b)高脂,高脂/高糖和生酮饮食。高脂饮食(HFD)通过过氧化物酶体增殖物 - 活化受体δ(PPARδ)和LXR/FXR信号传导激活β-蛋白酶靶基因,从而促进ISC增殖。此外,PPARδ使祖细胞能够恢复干细胞特征,从而促进肿瘤发生。高脂/高糖饮食(HFHSD)通过激活固醇调节性元件结合蛋白1(SREBP1,用于脂肪酸合成),PPARγ信号传导和胰岛素受体-FR-FR-FR-AKT途径来诱导粘膜变化和肠道疾病。酮体衍生自生酮饮食(KTD)或禁食会影响ISC茎和通过3-羟基-3-甲基戊二核酸COA合成酶2(HMGCS2)-Class-Class-Class 1组蛋白脱乙酰基酶(HDAC) - NOTCH信号的分化。