在过去的几十年中,人们已经清楚地认识到表观遗传异常可能是癌症的标志之一。例如,组蛋白的翻译后修饰可能通过调节基因转录、染色质重塑和核结构在癌症的发展和进展中发挥关键作用。组蛋白乙酰化是一种研究充分的翻译后组蛋白修饰,受组蛋白乙酰转移酶 (HAT) 和组蛋白去乙酰化酶 (HDAC) 的相反活性控制。通过去除乙酰基,HDAC 可逆转染色质乙酰化并改变致癌基因和肿瘤抑制基因的转录。此外,HDAC 可去乙酰化多种非组蛋白细胞底物,这些底物控制着包括癌症发生和进展在内的多种生物过程。本综述将讨论 HDAC 在癌症中的作用以及 HDAC 抑制剂 (HDACi) 作为癌症治疗的新兴药物的治疗潜力。
主机:Rafael de Freitas E Silva和Wilfried Ellmeier控制感染期间巨噬细胞反应或对无菌损害的反应的机制是Lidia Bosurgi博士的Laboratoy博士的主要研究领域。她的研究重点是分析垂死细胞的吞噬作用,这是巨噬细胞在身体所有组织中执行的至关重要的任务,对组织重塑的启动。These results have led Lidia Bosurgi's lab to investigate tissue-specific factors that contribute to the transcriptional and functional heterogeneity of phagocytic macrophages in a variety of settings, such as homeostasis, infection with the parasite Schistosoma mansoni , and murine models of autoimmune liver diseases, colitis, inflammation-driven cancer, and metabolic challenges.通过探索巨噬细胞吞噬作用机制的复杂性质及其对免疫反应,组织稳态和疾病进展的后果,她旨在帮助开发新的方法,以增强各种疾病的管理和治疗。访问Lidia Bosurgi网站选出了最新出版物:•Liebold等。“凋亡细胞的身份在胚胎细胞宏观噬菌体中诱导对IL-4的不同功能响应。”科学。2024 APR 5; 384(6691):EABO7027。doi:10.1126/science.abo7027。EPUB 2024 APR 5.PMID:38574142•HAMLEY等人。 “ NMES1是影响肠道愈合潜力的粘膜反应的新型调节剂”。 EUR J Immunol。 2024年2月; 54(2):E2350434。 doi:10.1002/eji.202350434。 EPUB 2023 11月28日。 PMID:37971166•Zhao等。 Sci Adv。EPUB 2024 APR 5.PMID:38574142•HAMLEY等人。“ NMES1是影响肠道愈合潜力的粘膜反应的新型调节剂”。EUR J Immunol。 2024年2月; 54(2):E2350434。 doi:10.1002/eji.202350434。 EPUB 2023 11月28日。 PMID:37971166•Zhao等。 Sci Adv。EUR J Immunol。2024年2月; 54(2):E2350434。doi:10.1002/eji.202350434。EPUB 2023 11月28日。PMID:37971166•Zhao等。 Sci Adv。PMID:37971166•Zhao等。Sci Adv。“经吞噬作用通过TIMP1促进恶性胸腔积液”。2021 8月13日; 7(33):EABD6734。doi:10.1126/sciadv.abd6734。打印2021 8月PMID:34389533
过去十年的研究证据表明,表观遗传调节机制通过肿瘤的发展和预后运行。因此,针对表观遗传调节的小分子化合物已成为癌症治疗药物发展的研究热点。根据发生肿瘤时组蛋白乙酰化的明显异常,这表明组蛋白乙酰化修饰在肿瘤发生过程中起重要作用。目前,作为一种新的潜在抗癌药物,靶向组蛋白乙酰化调控酶或蛋白质(例如组蛋白脱乙酰基酶(HDAC)),组蛋白乙酰基转移酶(HATS)和溴化物瘤(BRDS)的许多活性小分子已开发出来恢复平均成绩替代的成替代剂量。在这篇综述中,我们将重点介绍肿瘤发生过程中组蛋白乙酰化水平的变化,以及针对癌症治疗中组蛋白乙酰化的小分子的可能的药理学机制。
二氢吡啶(DHPM)是一类独特的杂环化合物,该化合物由一个含两个氮原子的六个成员环组成。dhpm环由一种极有效的合成策略(称为biginelli反应)合成,通常是单锅多组分反应[1]。由于抗癌药[2],抗菌[3],抗氧化剂[4],抗高血压[5],抗病毒[6]和抗炎性[7]功能,DHPM的功能引起了重要的重要性,因此由于抗癌[2],抗氧化剂[4],抗氧化剂[4],抗氧化剂[4],抗氧化剂[4],抗氧化剂[4],抗氧化剂[4],抗菌[4],抗氧化剂[4],抗菌[3],抗菌[3],抗氧化剂[4],抗氧化剂[4],DIV [DIV>,,抗氧化剂[3],抗氧化剂[4],抗病毒[6]和抗炎能力[7],在设计新的药剂学运动员方面具有重要的重要性。 Several DHPM derivatives have been marketed as medications and acquired enormous fame which is probably due to the broad spectrum of biological activities of dihydropyrimidines which make them an attractive moiety in designing various medicines such as the anticancer agents 5-fluorouracil and capecitabine, the antimalarial drug pyrimethamine, anti-HIV drug batzelladine A and B and the抗菌剂甲甲氧苄啶[8]。 组蛋白脱乙酰基化是翻译后修饰之一,在几种细胞活性中具有关键作用,例如转录活性和氧气水平检测和适应细胞水平的中心调节[9]。 此过程由组蛋白脱乙酰基酶(HDAC)酶控制。 HDAC酶具有18种同工型(1-18)。 同工型(1-11)是Z +2-依赖性酶,(12-18)是NAD +依赖性酶。 HDAC已撤回,抗氧化剂[3],抗氧化剂[4],抗病毒[6]和抗炎能力[7],在设计新的药剂学运动员方面具有重要的重要性。Several DHPM derivatives have been marketed as medications and acquired enormous fame which is probably due to the broad spectrum of biological activities of dihydropyrimidines which make them an attractive moiety in designing various medicines such as the anticancer agents 5-fluorouracil and capecitabine, the antimalarial drug pyrimethamine, anti-HIV drug batzelladine A and B and the抗菌剂甲甲氧苄啶[8]。组蛋白脱乙酰基化是翻译后修饰之一,在几种细胞活性中具有关键作用,例如转录活性和氧气水平检测和适应细胞水平的中心调节[9]。此过程由组蛋白脱乙酰基酶(HDAC)酶控制。HDAC酶具有18种同工型(1-18)。同工型(1-11)是Z +2-依赖性酶,(12-18)是NAD +依赖性酶。HDAC已撤回这些酶负责组蛋白的ε-赖氨酸尾巴的催化脱乙酰基化,从而释放了自由胺基团,该胺在生理pH值时会积极充电,并加强了带负电荷的DNA骨链的相互作用,使染色质降低了较不宽松的状态,并降低了透明度的透视率,并降低了具有透明型因素和影响力的易感性和影响力的[10]。
组蛋白去乙酰化酶 (HDAC) 是一类锌 (Zn) 依赖性金属酶,负责表观遗传修饰。HDAC 主要与在 DNA 水平上调节基因表达的组蛋白有关。这种严格的调节由组蛋白和非组蛋白的乙酰化 [通过组蛋白乙酰转移酶 (HAT)] 和去乙酰化 (通过 HDAC) 控制,这些蛋白会改变 DNA 的卷曲状态,从而影响基因表达作为下游效应。在过去的二十年里,HDAC 得到了广泛的研究,并被应用于一系列疾病,其中 HDAC 失调与疾病的出现和进展密切相关 - 最突出的是癌症、神经退行性疾病、艾滋病毒和炎症性疾病。HDAC 作为这些生化途径的调节剂参与其中,使其成为一个有吸引力的治疗靶点。本综述总结了为创造 HDAC 抑制剂 (HDACis),特别是 I 类 HDAC 而做出的药物开发努力,重点关注这些抑制剂的药物化学、结构设计和药理学方面。
特发性肺纤维化(IPF)是一种慢性进行性疾病,是未知来源和最常见的间质性肺部疾病。但是,IPF的治疗选择是有限的,迫切需要新的疗法。组蛋白脱乙酰基酶(HDACS)是参与染色质重塑和基因转录调控的组蛋白乙酰化活性的酶。越来越多的证据表明,HDAC家族与包括IPF在内的慢性杂化疾病的发展和发展有关。本评论旨在总结有关HDAC和相关抑制剂及其在治疗IPF中的潜在应用的可用信息。将来,HDACs可能是新的靶标,可以帮助理解PF的病因,并且选择性抑制单个HDAC或HDAC基因的破坏可能是治疗PF的策略。
精神病学和行为神经科学系摘要标题:使用 [18F]TFAHA PET/CT 成像研究低和高可卡因摄入量对大鼠伏隔核和海马中 HDACs IIa 类表达活性的影响。Walid F. Alsharif、Arman Harutyunyan、Swatabdi Kamal、Juri G. Gelovani、Shane A. Perrine。顾问:Shane Perrine
HDAC 是一类催化组蛋白尾部赖氨酸残基乙酰基去除的酶,从而导致染色质重塑。[3] 具体而言,乙酰基的去除会导致染色质凝聚,这是由于去乙酰化的组蛋白胺的氮的正电荷与带负电荷的 DNA 链之间的相互作用。[4] 这种相互作用阻碍了转录因子的进入,最终导致转录抑制。因此,HDAC 是调控基因表达的重要酶。[5] 在 HDAC 底物中,不仅有组蛋白尾部的赖氨酸,还有非组蛋白,如转录因子、细胞骨架蛋白、分子伴侣和核输入因子,涉及广泛的生物学过程。[6]
脂肪酸丙戊酸(2-丙基戊酸,VPA)几十年来一直被频繁用于治疗多种神经病,如偏头痛、躁郁症和癫痫(7、8)。这种抗惊厥药物是一种 HDAC 抑制剂,可改变许多关键细胞过程中的基因表达(9)。VPA 对 HDAC 的抑制通过增强细胞生长和分化来影响细胞存活,同时抑制细胞凋亡和炎症(10)。因此,由于肿瘤细胞中 HDAC 表达升高且具有成本效益的特点,VPA 对 HDAC 抑制的影响已成为癌症治疗中的广泛首选(11)。与传统治疗方法相结合,分子靶向疗法作为抗癌策略引起了极大关注。因此,这种协同治疗方法已被证明可以抑制多种癌症类型的肿瘤增殖和转移(6)。尽管许多实验研究已经调查了无毒 VPA 对癌细胞的影响和益处,但人们对 VPA 对健康人体细胞与癌细胞相比的分子反应知之甚少。为了实现这一目标,我们使用 VPA 处理的 HEK293T 细胞系作为
炎症反应在细胞水平上主要由组蛋白和非组蛋白的可逆乙酰化调控。组蛋白乙酰转移酶 (HAT) 和组蛋白去乙酰化酶 (HDAC) 分别催化组蛋白 N 端赖氨酸残基的乙酰化和去乙酰化之间的严格控制平衡,是表观遗传调控的重要组成部分 (Bannister and Kouzarides 2011)。该过程的失调会导致许多由免疫系统异常激活引起的疾病的病理:据报道,类风湿性关节炎 (RA)、哮喘、慢性阻塞性肺病和系统性红斑狼疮 (Zhang and Zhang 2015) 中组蛋白乙酰化标记和 HAT/HDAC 平衡的改变。致病菌靶向 HDAC 依赖性调节机制以逃避宿主免疫反应 (Grabiec and Potempa 2018),这一发现也凸显了蛋白质乙酰化在炎症反应中的重要性。哺乳动物细胞表达 18 个 HDAC 家族成员,包括经典的锌依赖性 HDAC 和烟酰胺腺嘌呤二核苷酸 (NAD) 依赖性 sirtuins (Sirt-1-7)。