超导高熵合金(HEAS)是一类新型的超导体,具有电子设备的应用。在这里,我们研究了MO合金对具有组成(TANB)1- X(ZRHFTI)X mo y的高熵纤维超导性能的影响。对于近乎摩尔的组成,将晶粒晶粒转化为具有几纳米尺寸的大小的无定形聚集,形成了晶体/玻璃纳米复合材料。在晶体和无定形的HEAS中,成分原子均表现出均匀的分布。受熵影响的相地层抑制了HEAS中的超导转变,从而扩大了正常的超导过渡状态,并抑制了零耐抗性的临界温度至较低的恒定值约为2.9 K.
高级核反应堆的苛刻操作环境需要开发新的核材料,这些核材料可以承受其物理,化学,热和辐射相关的挑战的增加。高渗透合金(HEAS)表现出非常令人印象深刻的机械,热机械和耐腐蚀的特性,并提供了庞大的,未开发的构图空间,允许靶向施用特异性材料的靶向开发。此外,尽管仍处于新生的阶段,但研究表明,HEAS可能表现出独特的辐射耐受性,包括减少缺陷的产生和对辐射引起的肿胀和硬化的抗性。尽管复杂的能量景观,降低的导热率以及缺陷迁移能量和途径的变化提供了有希望的解释,但这种耐受性耐受性背后的机制尚未得到充分理解。这项工作评估了结构性核材料所面临的当前和未来挑战,并确定了在Ashby材料选择地图的帮助下,HEAS可以提供与行业标准材料相关的竞争优势的特定应用。的考虑,包括计算核相关性能,以协助根据应用要求(例如,在核心内应用中的中子捕获低的捕获量低),将HEAS现有构图范围缩小到可管理的范围。©2022 Elsevier B.V.保留所有权利。
摘要:金属-空气电池,特别是锂-空气和锌-空气电池,由于其理论比能量高、安全和环境友好而引起了广泛的关注和研究。然而,正极动力学缓慢是阻碍其实际电化学性能的关键因素之一。为了解决这个问题,使用高效催化剂是一种可行有效的策略。在已报道的各种催化剂中,高熵合金(HEA)由于其可调的组成和电子结构已成为一种很有前途的催化剂。因此,在HEA催化体系中取得了令人鼓舞的电池性能。在本综述中,我们首先总结了具有代表性的金属-空气电池,包括锂-O 2 、锂-CO 2 和锌-空气电池的反应机理和挑战,然后介绍了HEA的合成方法和核心效应。我们还总结了HEA在这些电池中的一些研究进展。最后,我们对HEA在金属-空气电池中的未来研究前景进行了展望。
摘要:质子交换膜水电解仪(PEM-WE)是一种著名的氢生产绿色技术。大规模开发的主要障碍是氧气进化反应(OER)的动力学。目前,对OER的酸稳定电催化剂的设计构成了电催化中的重要活性。本评论介绍了对氧气演化,反应机理和OER描述符的高级电催化剂设计的基本原理和策略的分析。对OER电催化剂的审查进行了从单一到多元素的元素组成。此外,总结了高渗透合金(HEAS)的目的(HEAS),用于设计高级材料的设计。brie tove the the的影响,对调节催化剂的电子特性有益的支持材料的影响。最后,给出了酸性OER电催化剂的前景。
高渗透合金(HEAS)的开发标志着合金设计的范式转移,从传统的方法中转移到了优先考虑较小元素增强的优先基础金属的传统方法。HEAS相反,没有单个主导成分的多个合金元素,从而扩大了合金设计的范围。这种转变导致创建具有高熵(AHES)家族的各种合金,包括高熵钢,超级合金和金属层间,每种都强调了需要考虑其他因素,例如堆叠故障能量(SFE),晶状体失误和抗形边界能量(抗形边界能量(APBE)),这是由于对显微镜的影响而产生的重大影响。在合金中利用多个元素为开发来自多组分废料和电子废物的新合金的有希望的可能性,从而减少了对关键金属的依赖,并强调了对高级数据生成技术的需求。凭借这些多组分原料提供的巨大可能性,建模和基于人工智能的工具对于有效探索和优化新合金至关重要,从而支持冶金中的可持续发展。这些进步要求重新构想合金设计框架,强调强大的数据获取,
概述 在 IMDEA,纳米压痕技术用于测量材料硬度和杨氏模量随温度的变化,这些材料适用于严酷环境下使用,例如新一代高熵合金 (HEA)。高温室可在受控气氛下进行从室温到 750°C 的测量。耐火 HEA(即 MoNbTaW)是高温应用非常有吸引力的材料,例如航空航天领域的更高使用温度的内燃机,这可以提高燃烧本身的产量。在这项工作中,通过定向能量沉积 (DED) 原位合金化和 V 添加优化了 MoNbTaW 系统,并对其进行了高通量成分筛选 [1]。聚合物的高应变率表征尤为重要,因为这些材料对速率高度敏感。该领域的新发展将为校准纤维增强聚合物复合材料冲击行为的微观机械模型打开大门,并结合应变率相关行为。提出了一种用于高应变率微柱压缩试验的新型测试装置,并将其用于研究环氧树脂在宽应变率范围内的力学行为[2]。
高熵合金(HEA)最近成为了一类新的材料,由于其有趣的吸附性能,它们引起了人们对氢储存应用的兴趣。与常规合金不同,HEAS由五个或更多的化学元素组成,比例可能在5个范围内。%至35 at。%。所得的高混合熵促进了多元素实心溶液相的形成,通常表现出简单的晶体学结构(BCC,FCC或HCP)。这一独特的功能增强了HEAS吸收和吸收氢的能力,并使它们成为氢存储应用的有希望的候选者。我们的工作针对由Ti,V,Cr,Mn和/或Fe组成的HEA。在合理的压力和温度条件下,这些合金在氢吸附性能方面已经显示出有望[MAR23]。然而,研究的组合物表现出不同晶体学结构的几个阶段的混合,从而阻止了对合金特性的结构影响。因此,我们工作的目的是探索其他化学成分,以便可能i)合成单相合金和ii)在环境温度下调整平衡压力。目前的贡献侧重于三种合金,即Ti 25 V 35 Cr 32 Mn 8,Ti 25 V 35 Cr 34 Fe 6和Ti 23 V 37 Cr 30 Mn 5 Fe 5。X射线和中子衍射的互补性,与细MEB-EDX分析相结合,阐明了在晶体学结构和化学组成方面,阐明了微米尺度上存在的细微差异。通过Sievert的体积方法衡量的压力组分等温线对这些研究进行了补充,证实了这些合金对潜在应用的极大兴趣,在298 K.
摘要:高熵合金 (HEA) 由 5–35 at% 的五种或更多种元素组成,具有高配置熵,不形成金属间化合物,具有单相面心立方结构或体心立方结构。特别是,耐火高熵合金 (RHEA) 基于在高温下具有优异机械性能的耐火材料,在室温下具有高强度和硬度,在低温和高温下具有优异的机械性能。在本研究中,使用直接能量沉积 (DED) 沉积了 Ti-Nb-Cr-V-Ni-Al RHEA。在 Ti-Nb-Cr-V-Ni-Al 的微观结构中,σ、BCC A2 和 Ti2Ni 相似乎与相图中预测的 BCC A2、BCC B2 和 Laves 相不同。该微观结构类似于铸造的 Ti-Nb-Cr-V-Ni-Al 的微观结构,并具有构造的细晶粒尺寸。发现这些微观组织的生长是由于 DED 工艺,该工艺具有快速凝固速度。细小的晶粒尺寸导致高硬度,测量的 Ti-Nb-Cr-V-Ni-Al 显微硬度约为 900 HV。此外,为了分析由耐火材料组成的 Ti-Nb-Cr-V-Ni-Al 的热性能,通过预热试验分析了热影响区 (HAZ)。由于 Ti-Nb-Cr-V-Ni-Al 的热扩散率高,HAZ 减小了。
克里斯托弗·D·伍德盖特博士,英国布里斯托尔大学物理学学院摘要:所谓的“高渗透合金”(heas)(heas) - 包含四个或多个元素的合金相结合的近距离比率,这是兴趣的 - 不仅是因为它们非常适合构成范围的范围,因为它们范围很重要,因为范围是一个有趣的范围,因为范围是范围的范围。行为和超导性。 从理论和模拟的角度来看,它们代表了由于化学复杂性以及潜在组成和原子能配置的巨大空间而引人入胜但具有挑战性的材料类别。 在本演讲中,我将概述一种新的建模方法[1-5],用于研究这些系统的相位稳定性,该方法基于代表原子尺度的化学闪光为“浓度波”描述了一系列潜在的有序结构。 通过使用密度功能理论(DFT)计算评估这些流量的能量成本,可以直接推断相变类,并恢复适合进一步计算研究的原子模型。 i将从案例研究中介绍一系列规范的高渗透合金的结果,表明该方法捕获了这些系统的相位行为,并提供了对原子序趋势的电子(偶尔磁[3])起源的基本物理洞察力。 我将努力使广泛的受众访问谈话,并在适当的情况下链接到实验。 参考文献:[1] Woodgate,Staunton,Phys。 修订版 b 105,115124(2022)。克里斯托弗·D·伍德盖特博士,英国布里斯托尔大学物理学学院摘要:所谓的“高渗透合金”(heas)(heas) - 包含四个或多个元素的合金相结合的近距离比率,这是兴趣的 - 不仅是因为它们非常适合构成范围的范围,因为它们范围很重要,因为范围是一个有趣的范围,因为范围是范围的范围。行为和超导性。从理论和模拟的角度来看,它们代表了由于化学复杂性以及潜在组成和原子能配置的巨大空间而引人入胜但具有挑战性的材料类别。在本演讲中,我将概述一种新的建模方法[1-5],用于研究这些系统的相位稳定性,该方法基于代表原子尺度的化学闪光为“浓度波”描述了一系列潜在的有序结构。通过使用密度功能理论(DFT)计算评估这些流量的能量成本,可以直接推断相变类,并恢复适合进一步计算研究的原子模型。i将从案例研究中介绍一系列规范的高渗透合金的结果,表明该方法捕获了这些系统的相位行为,并提供了对原子序趋势的电子(偶尔磁[3])起源的基本物理洞察力。我将努力使广泛的受众访问谈话,并在适当的情况下链接到实验。参考文献:[1] Woodgate,Staunton,Phys。修订版b 105,115124(2022)。[2] Woodgate,Staunton,Phys。修订版mater。7,013801(2023)。[3] Woodgate,Hedlund,Lewis,Staunton,Phys。修订版材料7,053801(2023)。[4] Woodgate,Staunton,J。Appl。物理。135,135106(2024)。[5] Woodgate,Marchant,Pártay,Staunton,Arxiv:2404.13173。(在Press,NPJ Comput。mater。)