什么是植物和环境新资源?发达国家的资源和能源需求目前过于依赖有限化石燃料的利用。虽然可再生能源技术(例如风能和光伏技术)在未来可能在生产电力中具有重要作用,但仍必须为工业化学品,现代合成产品和电动机燃料提供目前主要由化石燃料生产的供应。植物和环境新资源是一门科学纪律,它使用系统的方法结合材料科学和生物技术来开发来自环境友好和可再生植物生物量资源的功能生物材料,以促进共享人类和共同财富。也需要对植物生物量资源进行有效的和明智的管理来解决人类互动的问题。使用植物生物量的Kyung Heunge Remering Biorefinery技术的植物和环境新资源通过利用碳水化合物(地球表面上最丰富的有机化学物质)提供了可持续的替代品。 通过明智利用可再生和环境友好的植物生物量,我们的部门建立了解决当前全球问题的解决方案,尤其是资源和污染有限的问题。 为此,学生接受了最先进的课程的教育和培训。使用植物生物量的Kyung Heunge Remering Biorefinery技术的植物和环境新资源通过利用碳水化合物(地球表面上最丰富的有机化学物质)提供了可持续的替代品。通过明智利用可再生和环境友好的植物生物量,我们的部门建立了解决当前全球问题的解决方案,尤其是资源和污染有限的问题。为此,学生接受了最先进的课程的教育和培训。不仅学者,而且各种小组和部门的活动都旨在鼓励大学中的愉快和启发性的学生生活,例如会员培训,现场实践和海外大学的年度培训计划。
论文列表摘要。在新喀里多尼亚西南太平洋阿梅代灯塔珊瑚岛设置防波堤的初步研究/M. Allenbach 。在新喀里多尼亚西南太平洋努美阿-蒙特多尔沿海高速公路旁路建设影响研究的介绍和目标/A. Allenbach、P. Thollot、C. Chauvet 。17'-19'S EPR 上的构造、岩浆和热液活动之间的关系:NAUDUR 巡航(Nadir/Nautile)/J.M. Auzende、Y. Fouquet、V. Ballu、R. Batiza、D. Bideau、M-H. Cormier、P. Geistdoerfer、Y. Lagabrielle、J. Sinton、P. Spadea 。卫星测高法绘制的离岸海底地图:图瓦卢和巴布亚新几内亚境内调查结果/N. Baudry。全球地震网络覆盖太平洋/R. Butler。深海锰结核中 Toodorokite 和 Buserite 的出现/Se-won Chang, Chan Hee Lee。海洋矿产技术中心当前的研究活动/M.J. Cruickshank。印度洋和太平洋锰结核和结壳的比较/N.F. Exon。块状白云石的成因,第 143 航段,第 866A 洞,Guyot 分辨率,中太平洋山脉/P.G. Flood。加拿大海洋测绘技术的最新进展/E.C. Granter。库克群岛“EEZ”锰结核资源概述/S. Kingan。通过基底钻探评估翁通-爪哇高原的起源、年龄和后置入历史/L.W. Kroenke、J.J. Mahoney、A.D. Saunders。L 的形态结构结构
1 Dulal Borthakur,美国夏威夷大学马诺阿分校分子生物科学与生物工程系,1955 East-West Road,檀香山,HI 96822,美国 2 密歇根理工大学森林资源与环境科学学院,霍顿,MI 49931,美国 3 哥廷根大学森林科学与森林生态学院森林遗传学与林木育种系,Büsgenweg 2,37077 哥廷根,德国 4 北京林业大学生物科学与技术学院国家林木育种与生态修复工程研究中心,北京 100083,中国 5 北卡罗来纳州立大学树木改良合作计划,罗利,NC 27695,美国 6 庆熙大学植物与环境新资源系,1732 Deogyeong-daero,龙仁 17104,韩国东北林业大学林木遗传育种国家重点实验室,哈尔滨 150040 8 中国林业科学研究院林木遗传育种国家重点实验室,北京 100093 9 瑞典于默奥大学于默奥植物科学中心生态与环境科学系,于默奥 90187 10 黑龙江大学生命科学学院,哈尔滨 150080 11 中南林业科技大学经济林木培育与保护教育部重点实验室,湖南长沙 410004 所有作者的贡献相同,并按姓氏字母顺序列出,通讯作者除外。 * 通讯作者,电子邮件:hairong@mtu.edu
1。Hee Chung E,Chou J,Brown KA。 早产儿的神经发育结果:最近的文献综述。 transl pediatr。 2020; 9(增刊1):3-S8。 doi:10.21037/tp.2019.09.10 2。 luu tm,Mian Mor,Nuyt AM。 早产的长期影响。 临床perinatol。 2017; 44(2):305-314。 doi:10.1016/j.clp.2017.01.003 3。 McGowan EC,VOHR BR。 早产儿的神经发育随访:什么是新的? 北部的Pediatr Clin。 2019; 66(2):509-523。 doi:10.1016/j.pcl.2018.12.015 4。 Cheong JL,Doyle LW,Burnett AC等。 2岁时,中度和晚期出生与晚期神经发育与社会情感发展之间的关联。 Jama Pediatr。 2017; 171(4):E164805。 doi:10.1001/jamapediatrics.2016.4805 5。 Anderson P,Doyle LW,维多利亚时代婴儿合作研究小组。 在1990年代出生的学龄儿童的神经行为结果极低或早产。 JAMA。 2003; 289:3264-3272。 doi:10.1001/jama.289.24.3264 6。 Serenius F,KällénK,Blennow M等。 神经发育范围是在瑞典活跃的perinatal护理后的2。5年后,出现了极早的婴儿。 JAMA。 2013; 309(17):1810-1820。 doi:10.1001/ jama.2013.3786 7。 div> Cheong Jly,Burnett AC,Treyvaud K,Spittle AJ。 早产儿的早期环境和长期结局。 j神经传输(维也纳)。 2020; 127(1):1-8。Hee Chung E,Chou J,Brown KA。早产儿的神经发育结果:最近的文献综述。transl pediatr。2020; 9(增刊1):3-S8。doi:10.21037/tp.2019.09.10 2。luu tm,Mian Mor,Nuyt AM。早产的长期影响。临床perinatol。2017; 44(2):305-314。 doi:10.1016/j.clp.2017.01.003 3。 McGowan EC,VOHR BR。 早产儿的神经发育随访:什么是新的? 北部的Pediatr Clin。 2019; 66(2):509-523。 doi:10.1016/j.pcl.2018.12.015 4。 Cheong JL,Doyle LW,Burnett AC等。 2岁时,中度和晚期出生与晚期神经发育与社会情感发展之间的关联。 Jama Pediatr。 2017; 171(4):E164805。 doi:10.1001/jamapediatrics.2016.4805 5。 Anderson P,Doyle LW,维多利亚时代婴儿合作研究小组。 在1990年代出生的学龄儿童的神经行为结果极低或早产。 JAMA。 2003; 289:3264-3272。 doi:10.1001/jama.289.24.3264 6。 Serenius F,KällénK,Blennow M等。 神经发育范围是在瑞典活跃的perinatal护理后的2。5年后,出现了极早的婴儿。 JAMA。 2013; 309(17):1810-1820。 doi:10.1001/ jama.2013.3786 7。 div> Cheong Jly,Burnett AC,Treyvaud K,Spittle AJ。 早产儿的早期环境和长期结局。 j神经传输(维也纳)。 2020; 127(1):1-8。2017; 44(2):305-314。doi:10.1016/j.clp.2017.01.003 3。McGowan EC,VOHR BR。早产儿的神经发育随访:什么是新的?北部的Pediatr Clin。2019; 66(2):509-523。 doi:10.1016/j.pcl.2018.12.015 4。 Cheong JL,Doyle LW,Burnett AC等。 2岁时,中度和晚期出生与晚期神经发育与社会情感发展之间的关联。 Jama Pediatr。 2017; 171(4):E164805。 doi:10.1001/jamapediatrics.2016.4805 5。 Anderson P,Doyle LW,维多利亚时代婴儿合作研究小组。 在1990年代出生的学龄儿童的神经行为结果极低或早产。 JAMA。 2003; 289:3264-3272。 doi:10.1001/jama.289.24.3264 6。 Serenius F,KällénK,Blennow M等。 神经发育范围是在瑞典活跃的perinatal护理后的2。5年后,出现了极早的婴儿。 JAMA。 2013; 309(17):1810-1820。 doi:10.1001/ jama.2013.3786 7。 div> Cheong Jly,Burnett AC,Treyvaud K,Spittle AJ。 早产儿的早期环境和长期结局。 j神经传输(维也纳)。 2020; 127(1):1-8。2019; 66(2):509-523。doi:10.1016/j.pcl.2018.12.015 4。Cheong JL,Doyle LW,Burnett AC等。2岁时,中度和晚期出生与晚期神经发育与社会情感发展之间的关联。Jama Pediatr。2017; 171(4):E164805。 doi:10.1001/jamapediatrics.2016.4805 5。 Anderson P,Doyle LW,维多利亚时代婴儿合作研究小组。 在1990年代出生的学龄儿童的神经行为结果极低或早产。 JAMA。 2003; 289:3264-3272。 doi:10.1001/jama.289.24.3264 6。 Serenius F,KällénK,Blennow M等。 神经发育范围是在瑞典活跃的perinatal护理后的2。5年后,出现了极早的婴儿。 JAMA。 2013; 309(17):1810-1820。 doi:10.1001/ jama.2013.3786 7。 div> Cheong Jly,Burnett AC,Treyvaud K,Spittle AJ。 早产儿的早期环境和长期结局。 j神经传输(维也纳)。 2020; 127(1):1-8。2017; 171(4):E164805。doi:10.1001/jamapediatrics.2016.4805 5。Anderson P,Doyle LW,维多利亚时代婴儿合作研究小组。 在1990年代出生的学龄儿童的神经行为结果极低或早产。 JAMA。 2003; 289:3264-3272。 doi:10.1001/jama.289.24.3264 6。 Serenius F,KällénK,Blennow M等。 神经发育范围是在瑞典活跃的perinatal护理后的2。5年后,出现了极早的婴儿。 JAMA。 2013; 309(17):1810-1820。 doi:10.1001/ jama.2013.3786 7。 div> Cheong Jly,Burnett AC,Treyvaud K,Spittle AJ。 早产儿的早期环境和长期结局。 j神经传输(维也纳)。 2020; 127(1):1-8。Anderson P,Doyle LW,维多利亚时代婴儿合作研究小组。在1990年代出生的学龄儿童的神经行为结果极低或早产。JAMA。 2003; 289:3264-3272。 doi:10.1001/jama.289.24.3264 6。 Serenius F,KällénK,Blennow M等。 神经发育范围是在瑞典活跃的perinatal护理后的2。5年后,出现了极早的婴儿。 JAMA。 2013; 309(17):1810-1820。 doi:10.1001/ jama.2013.3786 7。 div> Cheong Jly,Burnett AC,Treyvaud K,Spittle AJ。 早产儿的早期环境和长期结局。 j神经传输(维也纳)。 2020; 127(1):1-8。JAMA。2003; 289:3264-3272。 doi:10.1001/jama.289.24.3264 6。 Serenius F,KällénK,Blennow M等。 神经发育范围是在瑞典活跃的perinatal护理后的2。5年后,出现了极早的婴儿。 JAMA。 2013; 309(17):1810-1820。 doi:10.1001/ jama.2013.3786 7。 div> Cheong Jly,Burnett AC,Treyvaud K,Spittle AJ。 早产儿的早期环境和长期结局。 j神经传输(维也纳)。 2020; 127(1):1-8。2003; 289:3264-3272。doi:10.1001/jama.289.24.3264 6。Serenius F,KällénK,Blennow M等。神经发育范围是在瑞典活跃的perinatal护理后的2。5年后,出现了极早的婴儿。JAMA。 2013; 309(17):1810-1820。 doi:10.1001/ jama.2013.3786 7。 div> Cheong Jly,Burnett AC,Treyvaud K,Spittle AJ。 早产儿的早期环境和长期结局。 j神经传输(维也纳)。 2020; 127(1):1-8。JAMA。2013; 309(17):1810-1820。doi:10.1001/ jama.2013.3786 7。 div>Cheong Jly,Burnett AC,Treyvaud K,Spittle AJ。早产儿的早期环境和长期结局。j神经传输(维也纳)。2020; 127(1):1-8。doi:10.1007/s00702-019-02121-w
Mubarak Al-Sawafi 先生,阿曼苏丹国(第 5 章);Uzi Ben-Yakov 先生,Tadiran Electronic Systems(第 2.7 节);Robert Cutler 先生,安捷伦科技公司;Francois Delaveau 先生,泰雷兹公司;Saad Dera 先生,沙特阿拉伯王国(第 1 章);Pierre-Jean Dumay 先生,法国;Tamas Egri 先生,匈牙利;Thomas Hasenpusch 先生,德意志联邦共和国(第 4.9、5.3、5.7 节);Roland Heister 先生,德意志联邦共和国;James Higgins 先生,美国(第 2.4、2.6 节);Alain Jacquet 先生,法国(补充)、Sungmoon Kim 先生,大韩民国;Fryderyk Lewicki 先生,波兰电信公司;刘卓然先生,中国(第 5.1 节);Yvon Livran 先生,泰雷兹公司;Fabio Santos Lobao 先生,巴西(第 5.2 节、第 5.6 节);Haim Mazar 先生,以色列(第 2 章和第 6.1、6.2、6.3、6.4、6.11 节);Klaus Mecher 先生,德意志联邦共和国;Philippe Mege 先生,泰雷兹公司;Makoto Miyazono 先生,日本;Soon Hee Park 女士,韩国;David Pasquereau 先生,泰雷兹公司(第 4.7 节);Alexander Pavlyuk 先生,俄罗斯联邦(第 6 章);Olivier Pellay 先生,法国(第 4 章和第 6.9 节);Ulrich Pennig 先生,德意志联邦共和国(第 4.10 节); Christof Rohner 先生,罗德与施瓦茨公司;Mi-Kyung Suk 女士,大韩民国;Peter Tomka 先生,匈牙利(附件 1);Erik van Maanen 先生,荷兰王国;王志新先生,中华人民共和国(第 2.5 节);Roy B. Woolsey 先生,TCI 国际公司(第 3 章)。
3。生物医学科学系自身免疫和炎症实验室(LAI),第11和BK21Plus生物医学科学项目,首尔国立大学医学院医学院,12080年12月12日,大韩民国首尔。13 4。医学院生物医学科学系和BK21plus生物医学科学14韩国国立大学医学院汉城03080,大韩民国共和国。15 5。Yonsei大学医学院内科,16朝鲜共和国尤森大学。 17 6。 宽河免疫学研究所,首尔国立大学,韩国25159,共和国18号。 19 7。 肾脏科学系首尔国立大学医院肾脏科,韩国共和国2080年20月20日。 21 8。 肾脏科学系肾脏科学系22,尤斯大学医学院,首尔03722大韩民国。 23 9。 首尔国立大学医学院缺血/低氧疾病研究所;首尔24国立大学医院生物医学研究所,首尔03080,大韩民国。 25 26†这些作者对这项工作做出了同样的贡献27 28利益冲突陈述:29作者宣布不存在利益冲突。 30 31通讯32 33 Won-woo Lee D.V.M.,博士学位34 35教授,微生物学和免疫学系 /生物医学科学系36首尔国立大学医学院37 103 Daehak-ro,Jongno-Gu,韩国首尔03080,韩国。 44 Tel) +82-2-740-8545 /电子邮件)hyk0801@hotmail.com 45 46 < / div>Yonsei大学医学院内科,16朝鲜共和国尤森大学。17 6。宽河免疫学研究所,首尔国立大学,韩国25159,共和国18号。 19 7。 肾脏科学系首尔国立大学医院肾脏科,韩国共和国2080年20月20日。 21 8。 肾脏科学系肾脏科学系22,尤斯大学医学院,首尔03722大韩民国。 23 9。 首尔国立大学医学院缺血/低氧疾病研究所;首尔24国立大学医院生物医学研究所,首尔03080,大韩民国。 25 26†这些作者对这项工作做出了同样的贡献27 28利益冲突陈述:29作者宣布不存在利益冲突。 30 31通讯32 33 Won-woo Lee D.V.M.,博士学位34 35教授,微生物学和免疫学系 /生物医学科学系36首尔国立大学医学院37 103 Daehak-ro,Jongno-Gu,韩国首尔03080,韩国。 44 Tel) +82-2-740-8545 /电子邮件)hyk0801@hotmail.com 45 46 < / div>宽河免疫学研究所,首尔国立大学,韩国25159,共和国18号。19 7。肾脏科学系首尔国立大学医院肾脏科,韩国共和国2080年20月20日。21 8。肾脏科学系肾脏科学系22,尤斯大学医学院,首尔03722大韩民国。23 9。首尔国立大学医学院缺血/低氧疾病研究所;首尔24国立大学医院生物医学研究所,首尔03080,大韩民国。25 26†这些作者对这项工作做出了同样的贡献27 28利益冲突陈述:29作者宣布不存在利益冲突。30 31通讯32 33 Won-woo Lee D.V.M.,博士学位34 35教授,微生物学和免疫学系 /生物医学科学系36首尔国立大学医学院37 103 Daehak-ro,Jongno-Gu,韩国首尔03080,韩国。44 Tel) +82-2-740-8545 /电子邮件)hyk0801@hotmail.com 45 46 < / div>44 Tel) +82-2-740-8545 /电子邮件)hyk0801@hotmail.com 45 46 < / div>38 TEL) +82-2-740-8303,传真) +82-2-743-0881 /电子邮件)wonwoolee@snu.ac.kr 39 40 Hee Young Kim Ph.D. 41首尔国立大学医学院微生物学和免疫学系研究教授43 103 Daehak-Ro,Jongno-Gu,韩国首尔03080,韩国。
中风是一种可预防的疾病,根据 NHS 长期计划,它是英国第四大死亡原因,也是导致复杂残疾的最大原因。由于人口结构的变化,到 2035 年,中风人数将增加近一半,而中风幸存者中患有残疾的人数将增加三分之一。此时,劳动力面临巨大挑战,NHS 正在努力加强活动并解决日益增加的护理积压问题。模型预测,到 2035 年,英国中风的社会成本将从 2015 年的 260 亿英镑增加到 750 亿英镑,因为每年中风发病率将增加 59%,达到 186,000 人。尽管预计中风发病率会有所增长,但仍需要解决当前中风劳动力中存在的巨大缺口,而且随着每年中风人数的增加,这一缺口将不断扩大。因此,需要做更多的工作来招募、培训和留住整个中风领域的卫生和护理人员,解决许多中风患者和中风幸存者护理方面持续存在的短缺问题(见中风协会)。建议中风服务部门应为所有提供急性、超急性中风护理和康复的工作人员提供教育计划,并提供明确的职业发展机会,这对于留住员工非常重要。向多学科群体提供互动式教育和培训以及使用协议或指南往往会对患者和护理质量产生积极影响。为了确保我们拥有足够数量、技能和能力的劳动力,英国国民医疗服务体系劳动力培训和教育 [WTE](以前称为英国健康教育 [HEE])开发了许多培训支持工具,即《中风:培训资源指南和数字工具包》,与 STAR 和 CLEAR 方法相结合,以支持劳动力转型。其他干预措施包括支持中风特定教育框架 (SSEF) 和相关中风电子学习 (FACTS、康复、护理)、职业播客和职业康复工具包。为了帮助优化可用的角色和职业道路,我们开发了这个培训目录,以进一步支持国家优先事项、劳动力能力和能力。该培训目录是中风职业道路和高等教育资源的集中存储库,旨在帮助 NHS 员工发展中风专业职业并扩展他们的临床专业知识。
Xianyong Yin, 1,2,3,4,5,6 Kwangwoo Kim , 7 Hiroyuki Suetsugu, 8,9,10 So-Young Bang, 11,12 Leilei Wen, 1,2 Masaru Koido, 9,13 Eunji Ha, 7 Lu Liu, 1,2 Yuma Sakamoto, 8,14 Sungsin Jo, 12 Rui-Xue Leng , 15 Nao Otomo, 8,9,16 Young-Chang Kwon, 12 Yujun Sheng, 1,2 Nobuhiko Sugano , 17 Mi Yeong Hwang, 18 Weiran Li, 1,2 Masaya Mukai, 19 Kyungheon Yoon, 18 Minglong Cai, 1,2 Kazuyoshi Ishigaki, 9,20,21,22 Won Tae Chung, 23 He Huang, 1,2 Daisuke Takahashi, 24 Shin-Seok Lee, 25 Mengwei Wang, 1,2 Kohei Karino, 26 Seung-Cheol Shim, 27 Xiaodong Zheng, 1,2 Tomoya Miyamura, 28 Young Mo Kang, 29 Dongqing Ye , 15 Junichi Nakamura , 30 Chang-Hee Suh, 31 Yuanjia Tang, 32 Goro Motomura, 10 Yong-Beom Park, 33 Huihua Ding , 32 Takeshi Kuroda, 34 Jung-Yoon Choe, 35 Chengxu Li, 4 Hiroaki Niiro, 36 Youngho Park, 12 Changbing Shen, 37,38 Takeshi Miyamoto, 39 Ga-Young Ahn, 11 Wenmin Fei, 4 Tsutomu Takeuchi , 40 Jung-Min Shin, 11 Keke Li, 4 Yasushi Kawaguchi, 41 Yeon-Kyung Lee, 11 Yong-Fei Wang , 42 Koichi Amano, 43 Dae Jin Park, 11 Wanling Yang , 42 Yoshifumi Tada, 44 Yu Lung Lau, 42 Ken Yamaji, 45 Zhengwei Zhu, 1,2 Masato Shimizu, 46 Takashi Atsumi, 47 Akari Suzuki, 48 Takayuki Sumida, 49 Yukinori Okada , 50,51,52 Koichi Matsuda, 53,54 Keitaro Matsuo, 55,56 Yuta Kochi , 57 Japanese Research Committee on Idiopathic Osteonecrosis of the Femoral Head, Kazuhiko Yamamoto , 48 Koichiro Ohmura, 58 Tae-Hwan Kim , 11,12 Sen Yang, 1,2 Takuaki Yamamoto, 59 Bong-Jo Kim, 18 Nan Shen , 32,60,61 Shiro Ikegawa, 8 Hye-Soon Lee, 11,12 Xuejun Zhang, 1,2,62 Chikashi Terao , 9,63,64 Yong Cui, 4 Sang-Cheol Bae 11,12
摘要自2000年代后期以来,国家航空航天管理局(NASA)参与了用于空间应用的金属添加剂制造(AM)的开发和成熟。通过材料表征和测试,标准开发,组成的制造以及对推进开发和飞行应用的注入,重点介绍了对AM过程的理解。除了机械和热物理测试外,NASA成熟的常用航空合金(镍,铜,不锈钢和钢,铝和基于钛的镍,铝和基于钛的钢),除了机械和热物理测试外,还通过详细的AM过程和热处理表征。尽管这些合金在许多推进应用中都被积极使用,但需要使用集成计算材料工程(ICME)(ICME)和高性能应用程序的过程开发进行持续的AM优化合金。针对的应用是液体火箭发动机;先进的推进系统;和高热通量,高压和/或使用可以降解合金(例如氢)的推进剂的空间推进。本文使用激光粉末床融合(L-PBF)和激光粉末定向能量沉积(LP-DED)工艺强调了更常见的AM合金的表征和物理特性。此外,本文讨论了一些正在进行的新型合金开发和使用AM用于这些恶劣环境中的新型合金开发和成熟,例如GRCOP-42,GRCOP-84,NASA HR-1,GRX-810和C-103。这些过程的结果表明,AM可以实现使用ICME优化合金的快速开发和持续的努力,从而产生更高的性能。这些合金进行了建模,基本冶金评估,热处理研究,详细的微观结构表征和机械测试运动。这与直接应用特定的组件制造和热火测试相结合,通过高占用周期测试使技术准备水平(TRL)的提高能够提高。此处介绍了这些新型AM启用合金和正在加工的开发,包括冶金和机械性能研究。还讨论了这些合金的平行组件开发以及热火测试和未来发展的最新进步。Keywords : Additive Manufacturing, Propulsion, Rockets, Alloy Development, GRCop-42, GRCop-84, Refractory, GRX-810, NASA HR-1, L-PBF, LP-DED, DED, Laser Powder Bed Fusion, Laser Powder Directed Energy Deposition Acronyms/Abbreviations AM Additive Manufacturing (AM), Carbide Dispersion Strengthened (CDS), Directed能量沉积(DED),家用或异物碎片(DOD或FOD),氢环境封闭(HEE),氢含水剂指数(HEI),热等速度压迫(HIP),集成计算材料工程(ICME),低循环疲劳(LCF),LCF),Laser粉末床融合(LPBF),Laser fordect(Laseredect),Laser dive-dive-dive-dirotect(Laser dirotect)(LASEREDEDED)