多年来,我们亥姆霍兹一直致力于研究和开发未来的生物医学技术。我们的亥姆霍兹中心现在正在汇集他们的专业知识,开展“亥姆霍兹生物医学工程”计划。通过这种方式,我们旨在深化跨学科思想交流,加速产品发现和开发以及创建公司。为此,我们与行业密切合作,促进创业,并支持生物医学初创企业。我们还投资于新一代生物工程师的培训:我们不仅为他们提供进行出色研究的理想条件,还将在专业博士课程和基本商业模式中教授他们必要的创业知识。同时,需要解决重要的伦理问题,例如人类、农作物和牲畜基因改造的后果。该网络将透明地向公众通报这些主题,从而发起社会讨论并提供科学支持。
全球越来越多的人患有常见疾病,例如糖尿病,痴呆,心血管疾病或癌症。针对此类疾病,我们通过生物医学工程发展了全新的治疗概念。尤其是早期发现,即预防,但也通过生物医学工程进行了革命性的彻底革命 - 然后更精确,更有效地工作:例如,仅对分子水平进行分析,仅在分子水平上分析组织样本,只有在他们的工作中仅适用于它们,并且仅在其上可以使用并在本地使用并在本地使用。医生很快就会依靠全球成千上万种同样存储的案件的经验。
可以局部和标记更准确的肿瘤,将是更成功的放射疗法。然而,到目前为止,这一领域已经面临着重大挑战,因为它非常密集地将不同的成像方式的结果相关联并以三维形式呈现它们。肿瘤的精确定位和标记是“人类放射线项目”旨在改善医学成像领域的众多程序之一。该项目将世界上最广泛,最多样化的3D放射学图像(例如MRI和CT扫描)组合到基础模型中。这使研究人员能够深入了解人类的解剖学和病理学,以及全面的放射学信息范围的概述。“人类放射线项目”不仅可以增强个性化医学,而且通过减少手动注释复杂的医学图像的需求来提高诊断效率。
由亥姆霍兹能源出版 亥姆霍兹能源办公室 卡尔斯鲁厄理工学院 Kaiserstraße 12 76131 Karlsruhe 电子邮件:helmholtzenergy@sts.kit.edu https://energy.helmholtz.de/ 请引用为:亥姆霍兹能源 (2024):亥姆霍兹能源转型路线图 (HETR)。卡尔斯鲁厄。 DOI:10.5445/IR/1000172546 项目负责人:Holger Hanselka,亥姆霍兹能源副总裁,任期至 2023 年 Bernd Rech,亥姆霍兹能源副总裁,任期 2023 年 主要作者(按字母顺序排列):Mark R. Bülow 1 、Andrey Litnovsky 2 、Andrea Meyn 3 、Robert Pitz-Paal 1 , Witold-Roger Poganietz 4 , Sebastian Ruck 4 , Dominik Soyk 3 , K. Gerald van den Boogaart 5 贡献作者(按字母顺序排列) : Heike Boos 3 , Roland Dittmeyer 4 , Helmut Ehrenberg 4 , Maximilian Fichtner 4 , Olivier Guillon 2 , Veit Hagenmeyer 4 , 帕特里克·约赫姆 1 , Thiemo Pesch 2 , Ralf Peters 2 , Rutger Schlatmann 6 , Sonja Simon 1 , Robert Stieglitz 4 , Roel van de Krol 6 致谢:我们感谢以下科学家的贡献(按字母顺序排列):Alejandro Abadías-Llamas 5 , Fatwa F. Abdi 6 , Syed Asif Ansar 1 , Armin Ardone 4 , 克里斯托夫·阿恩特 1 , 塔贝阿恩特 4 , 克里斯托弗·鲍尔 2 , 鲍凯宾 4 , 沃纳·鲍尔 4 , 丹·鲍尔 1 , 曼努埃尔·鲍曼 4 , 沃尔夫冈·贝尔 2 , 克里斯托夫·布拉贝克 2 , 乌尔特·布兰德-丹尼尔斯 1 , Seongsu Byeon 1 , 索尼娅·卡尔南 6 , 莫妮卡·卡尔森 2 , 伊西多拉切基奇-拉斯科维奇 2 , 迈克尔·齐佩雷克 2 , 曼努埃尔·达门 2 , 鲁迪格-A。 Eichel 2 , Ghada Elbez 4 , Ursel Fantz 7 , Dina Fattakhova-Rohlfing 2 , Egbert Figgemeier 2 , Kevin Förderer 4 , Stefan Fogel 5 , K. Andreas Friedrich 1 , Giovanni Frigo 4 , Axel Funke 4 , Siddhartha Garud 6 , Hans-Joachim Gehrmann 4 , Stefan Geißendörfer 1 , Hans C. Gils 1 , Valentin Goldberg 4 , Vaidehi Gosala 1 , Thomas Grube 2 , Martina Haase 4 , Uwe Hampel 5 , Benedikt Hanke 1 , Ante Hecimovic 7 , Heidi Heinrichs 2 , Peter Heller 1 , Wolfgang Hering 4 ,米凯拉·赫尔 1、马克·希勒4 , Tobias Hirsch 1 , Carsten Hoyer-Klick 1 , Judith Jäger 1 , Thorsten Jänisch 1 , Christian Jung 1 , Thomas Kadyk 2 , Olga Kasian 6 , Shaghayegh Kazemi Esfeh 1 , Peter Klement 1 , Christopher Kley 6 , Markus Köhler 1 , Thomas Kohl 4 , Manfred Kraut 4 , Ulrike Krewer 4 , Uwe G. Kühnapfel 4 , Felix Kullmann 2 , Arnulf Latz 4 , Thomas Leibfried 4 , Ingo Liere-Netheler 1 , Guido Link 4 , Jochen Linßen 2 , Yan Lu 6 , Kourosh Malek 2 , Florian Mathies 6 , Jörg马太斯 4 , 马修·梅尔 6 , Wided Medijroubi 1 , Wolfgang Meier 1 , Matthias Meier 2 , Norbert H. Menzler 2 , Wilhelm A. Meulenberg 2 , Nathalie Monnerie 1 , Dulce Morales Hernandez 6 , Michael Müller 2 , Martin Müller 2 , Alexander von Müller 7 , Gerd Mutschke 5 , Tobias Naegler 1 , Dimitry Naumenko 2 , Eugene T. Ndoh 1 , Klarissa Niedermeier 4 , Fabian Nitschke 4 , Mathias Noe 4 , Urbain Nzotcha 2 , Sadeeb S. Ottenburger 4 , Ulrich W. Paetzold 4 , Joachim Pasel 2 , Sara Perez-Martin 4 , 伊恩·M·彼得斯 2 , 彼得普法伊弗 4 、诺亚·普弗格勒特 2 、菲利普·N·普莱索 4 、迈克尔·波兹尼克 4 , 安里克·普拉茨-萨尔瓦多 4 , 帕特里克·普鲁斯特 2 , 德克·拉德洛夫 4 , 乌韦·劳 2 , 德克·雷瑟 2 , 马塞尔·里施 6 , 马丁·罗布 1 , 克里斯汀·罗施 4 , 菲利普·罗斯 4 , 卢卡斯·罗斯 1 , 雷姆齐·坎·萨姆松 2 , 伊娃·席尔 4 ,安德里亚·施赖伯 2 , 马库斯·舒伯特 5 , 弗兰克·舒尔特 1 , 托尔斯滕·施瓦茨 1 , 哈瓦尔·沙蒙 2 , 梅塔尔·施维罗 2 , 谢尔盖·索尔达托夫 4 , 迪特·斯塔普夫 4 , 帕纳吉奥蒂斯·斯塔索普洛斯 1 , 桑德拉·斯坦克 6 , 沃尔克·施特尔泽 4 , 彼得·斯特默曼 4 , 菲利克斯斯图特 4 , 克洛伊·西拉尼杜2 , Muhammad Tayyab 2 , André Thess 1 , Stefanie Troy 2 , Julia Ulrich 4 , Annelies Vandersickel 1 , Robert Vaßen 2 , Martin Vehse 1 , Stefan Vögele 2 , Thomas Vogt 1 , Simon Waczowicz 4 , André Weber 4 , Tom Weier 5 , Marcel Weil 4 , 阿方斯·魏森伯格 4 , 托马斯·韦策尔 4 , 凯·维格哈特 1 , 克里斯蒂娜·伍尔夫 2 , 安德烈·霍内克斯 2 , 佩特拉·扎普 2 , 马可·佐贝尔 1 , 斯特凡·祖夫特 1
到2100年,目前约80亿人口的世界人口预计将超过110亿。由于全球增加的趋势影响,气候正在发生变化,human-andimal接触正在加剧,并且越来越多的荒野被转变为农田。在协作中,这些转变导致人畜共患病原体从野生动植物中发现的巨大微生物多样性和人类转移的风险增加。全球化随后在局部新出现的病原体迅速在世界各地蔓延,因为最近在COVID-19的大流行中所表明的。对疫苗和治疗剂的耐药性的快速发展进一步加剧了人畜共患病的威胁。这意味着全球人类健康是与动物与环境相互作用的产物。因此,孤立地关注人类或动物健康的孤立的AP将无法理解疾病的出现,并阻碍了预防措施的发展。在一个健康框架中使用的综合跨学科方法,这是一种关注环境中人类和动物的健康,显然需要处理这些复杂的多方面问题。
PIER 研究生周是针对 PIER 研究领域的博士生举办的跨学科研讨会和讲座周,每年举办一次。国内和国际演讲者提供广泛的入门和重点课程,涉及粒子和天体粒子物理学、纳米科学、光子科学以及感染和结构生物学等研究领域。每门课程都是连续四天的讲座和/或研讨会。入门课程专为希望了解更多相关研究领域的博士生而设计,而重点课程则是针对各自研究领域的博士生的深入课程。研究生周主要针对博士生,但也邀请感兴趣的硕士生和博士后参加。该计划还包括一些软技能课程、科学座谈会和商业讲座。
摘要生成模型最近彻底改变了机器学习,并长期以来一直认为是生物智能的基础。在动物中,数据表明海马形成学习并使用生成模型来支持其在空间和非空间记忆中的作用。在这里,我们引入了海马形成的生物学上合理模型,该模型将我们应用于连续的输入流中的Helmholtz机器。快速theta波段振荡(5-10 Hz)门通过网络流动的方向,训练它类似于高频唤醒式睡算法。我们的模型可以从感觉刺激中准确地推断潜在状态,并在离线上产生逼真的感觉预测。在导航任务上接受了训练,它通过开发环圈吸引子来学习可以集成的导航任务,并可以在与以前的理论但生物学上难以置信的建议之间灵活地传输这种结构。虽然许多模型具有一般性的生物学合理性,但我们的模型在一个简单和局部的学习规则下捕获了各种海马认知功能。
摘要:磁传感器元件的准确测量一直是磁场应用中的重要问题,但传感器系统中存在不可避免的误差,在使用前需要进行校正。常见的标量校正方法难以对传感器元件进行有效校正,因为它需要均匀稳定的背景磁场,并且依赖于磁场模量。因此,设计了一套可用于传感器矢量校正的三轴亥姆霍兹线圈,以产生受控的标准磁场。分析了线圈的设计指标、均匀区大小以及磁场与电流的关系,为传感器元件的有效校准提供依据。测量结果表明,本文设计的线圈的均匀区大小和磁场精度满足设计要求。同时,利用该线圈进行传感器阵列标定和磁目标定位,使传感器误差降低了3个数量级,磁目标定位精度达到0.1m,实用效果良好。
经颅超声疗法越来越多地用于非侵入性脑疾病治疗。然而,常规数值波求机的计算量过于昂贵,无法在治疗过程中在线使用,以预测经过头骨的声学字段(例如,考虑主题特定的剂量和靶向变化)。作为实时预测的一步,在当前工作中,使用完全学习的优化器开发了2D中异质Helmholtz方程的快速迭代求解器。轻型网络体系结构基于一个修改的UNET,其中包括一个学识渊博的隐藏状态。使用基于物理的损失功能和一组理想化的音速分布对网络进行训练(完全无监督的训练(不需要真正的解决方案)。学习的优化器在测试集上表现出了出色的性能,并且能够在训练示例之外良好地概括,包括到更大的计算域,以及更复杂的源和声速分布,例如,从X射线计算的颅骨图像中得出的那些。