在Eta-Fabrik,我们的核心知识之一是工业能源系统的综合和操作优化。我们通过使用开源和商业求解器应用数学优化来得出客观解决方案。虽然这对于我们大多数问题都可以正常工作,但有些人需要我们在当前的研究项目中开发的自定义算法解决方案。
欢迎参加第十次化学研究研讨会,该研讨会强调了我们的学生和我们荣誉客人在克莱姆森和其他机构进行的研究。所有这些学生都非常努力地突出化学研究的多样性和重要性。与海报作者互动,并体验他们对工作的热情和奉献精神。热情具有感染力,我们希望您能够受到与他们的对话的启发,以了解更多。科学对好奇而不是艰苦的工作,但是它确实为各种职业和职业提供教育和培训,而化学反应,作为中央科学,为充满机会的世界提供了一个遥不可及的点。我们希望您与我们一起度过时光!比尔·彭宁顿(Bill Pennington),主席
Spring Semester, 2025 Instructor: Dr. Deok-im Jean, U838, (032) 626-6209, deokim.jean@utah.edu Class Time and Location: Tue/Thurs, 9:00 AM ~ 10:50 AM, U108 Course Description: CHEM 1210 is a four-credit hour course, meeting a PS (Physical Sciences) general education requirement.化学的基本面被涵盖,强调了科学和工程专业的描述性,现代和应用化学。在面向应用程序的框架内采用数学和概念推理中解决问题的策略。主题包括原子理论,键合,术语,周期性,化学计量,气体定律,热化学,分子间力(尤其是液体和固体),以及水溶液化学的介绍。课程成果和目标:化学方面的强大基础对于应对能源,医疗保健,先进材料和环境可持续性等世界所面临的复杂挑战至关重要。本课程旨在在打算在广泛依赖这些原则和方法的领域中从事职业的学生中的化学原理和方法发展基本理解。成功完成本课程后,您将能够:
早先有报道称,人类对三种多年生黑麦草 (Loliurn perenne) 花粉过敏原 L o 2 p I、11 和 111 的免疫反应与组织相容性白细胞抗原 (HLA) -DR3 相关。黑麦过敏者往往对这三种过敏原一致敏感。由于早期研究表明这些抗原不具有交叉反应性,因此通过双抗体放射免疫分析 (DAFUA) 研究了它们的免疫学相关性,以进一步了解三种过敏原一致识别的免疫化学基础。使用来自 189 名过敏受试者的人血清进行了直接结合 DAFUA 研究。使用来自接受草免疫疗法的草过敏患者的 17 份人血清、一种山羊抗血清和六种兔抗血清进行了抑制 DAFUA 研究。血清中未检测到任何显著程度的 Lo olp I 和 11 之间或 Lo 2 p I 和 111 之间的双向交叉反应。然而,单个人类和动物抗血清表现出的 Lo Z p I1 和 I11 之间的双向交叉反应程度在不可检测和 100% 之间变化。一般而言,人类血清中 Lo 2 p I1 和 I11 之间的交叉反应程度高于动物血清。结合早期的研究结果,即对 Lo 2 p I、I1 和 111 的抗体反应与 HLA-DR3 有关,并且大多数 Lo2 p I1 和 III 反应者也
摘要 — 我们报告了使用两种缓冲层用于毫米波应用的超薄(亚 10 nm 势垒厚度)AlN/GaN 异质结构的比较结果:1) 碳掺杂 GaN 高电子迁移率晶体管 (HEMT) 和 2) 双异质结构场效应晶体管 (DHFET)。观察到碳掺杂 HEMT 结构表现出优异的电气特性,最大漏极电流密度 I d 为 1.5 A/mm,外部跨导 G m 为 500 mS/mm,最大振荡频率 f max 为 242 GHz,同时使用 120 nm 的栅极长度。C 掺杂结构在高偏压下提供高频性能和出色的电子限制,可在 40 GHz 下实现最先进的输出功率密度(P OUT = 7 W/mm)和功率附加效率 (PAE) 组合,在脉冲模式下高达 V DS = 25V 时高于 52%。
所提出的 VCO 架构基于参考文献 [16-18] 中研究的 Colpitts 结构以及作者在 [12] 中提出的结构,如图 2 所示。该振荡器的有源部分由两个晶体管 pHEMT 1 和 pHEMT 2 组成:每个晶体管有 4 个指状物,栅极长度和宽度分别为 0.25 µm 和 20 µm。指状物数量越多,输出功率就越大 [19]。每个晶体管都偏置在工作点 (VDS=2.2 V, VGS -0.6 V),三个电感 Ld1、Ld2 和 Lg 分别等于 0.15 nH、0.15 nH 和 0.1 nH。电路的性能在很大程度上取决于偏置条件 [20],因此偏置电压和电感的值需要仔细选择。 VCO 的谐振电路基于两个源漏短路晶体管 pHEMT 3 和 pHEMT 4。因此,这两个晶体管充当变容二极管,其电容值由施加到其栅极的电压源 Vtune 调整。
有关应用程序的资格,接受或拒绝,选择方式,部分或完整的选择过程的问题等。在这方面,不会访问任何信件/临时查询。填补该职位仅由董事CSIR-CECRI,Karaikudi的董事自行决定,基于候选人的适用性,如果由于不合适的候选人数量,这些职位中的某些职位未填补,则不会出现参与。有关项目人员参与的任何疑问,请在办公时间(上午09:00至上午05:30)联系办公室号码 - 04565 - 241219/218,或者邮件可以发送给restuit@cecri.res.in.in。除了上述办公室电话号码/电子邮件ID以外,不会播放任何电话/邮件。
阈值电压不稳定很大程度上被归因于 p-GaN/AlGaN 堆栈中存在的两种竞争机制,即空穴和电子捕获,分别导致负和正的 V TH 偏移 [3-9]。其中一种机制的盛行程度可能取决于栅极偏压和温度 [3]、技术种类 [11] 以及应力 / 表征时间 [12]。总体而言,来自栅极金属的空穴注入和 / 或高场耗尽肖特基结中的碰撞电离已被确定为导致 V TH 不稳定的此类现象的根本原因。提出了一些工艺优化措施,例如降低栅极金属附近 p-GaN 层中的活性镁掺杂浓度 [11]、降低 AlGaN 势垒中的铝含量 [3] 以及优化 p-GaN 侧壁的蚀刻和钝化 [10],以限制正向栅极应力下的负和正 V TH 偏移。
CHEM 105N 化学入门 (3 学分) 本课程是两个学期化学课程的第一部分,涵盖普通化学、有机化学和生物化学等主题。本部分将介绍无机(普通)化学的原理。涵盖的主题包括测量、原子和元素、化合物及其键、能量和物质、气体、溶液、酸和碱、化学反应和量、化学平衡和核化学。本课程不满足 CHEM 123N 的先决条件,不能用于 CHEM 专业或辅修。希望继续深造化学的学生应选修 CHEM 121N、CHEM 122N、CHEM 123N 和 CHEM 124N。如果学生已修过 CHEM 121N,则不允许修 CHEM 105N 的学分。CHEM 105N + CHEM 106N 满足大学科学本质通识教育要求的四个学分。先决条件:基本代数知识 共同要求:CHEM 106N
在可靠性研究中,当使用阈值电压 (V th ) 作为指标时,阈值电压 (V th ) 的不稳定性会造成问题,因为它会完全模糊由于实际器件老化而导致的最终漂移。这种不稳定性是在电气特性测量期间观察到的,与晶体管的“偏置历史”有关,这会在结构的不同层中引入载流子捕获/去捕获。因此,需要新的方法来克服这种与捕获相关的不稳定性问题,以便准确监控器件老化。为了解决阈值电压测量的可重复性问题,我们研究了其在 GaN 晶体管上的不稳定性。研究了在实际 V th 测量之前应用的预处理步骤。所提出的预处理方法基于在栅极端子上应用专用的 V GS (t) 偏置,从而导致 V th 的稳定和可重复值。通过分析预处理的 V th 测量后的漏极泄漏测量,可以确定实现观察到的 V th 稳定性的机制。它展示了空穴注入结构的作用。提出预处理 V th 测量方法作为补充测量,以便在未来的可靠性研究中正确跟踪 pGaN HEMT 的老化。