某些厌氧菌需要添加维生素K和Hemin(1,2)才能生长。因此,建议将硫代糖果培养基和维生素K用于分离和培养临床材料中存在于临床材料中存在的刺激性或缓慢增长的强制性厌氧微生物。也建议将多种有氧和辅助厌氧微生物分离和培养。色氨酸和酵母提取物提供氮化合物,维生素B复合物以及其他必要的生长养分,可用于细菌代谢。硫代基酸钠和l-cyst ine充当减少剂并在培养基中保持低氧张力。维生素K是某些prevotella黑色素毒素菌株的生长需求。顶部的粉红色环(氧化培养基)是由于硫唑蛋白指示剂引起的。hemin是X因子的来源,它刺激了许多微生物的生长。
用户必须在使用前确保产品在其应用中的适用性。产品仅符合该和其他相关HIMEDIA™出版物中包含的信息。本出版物中包含的信息基于我们的研发工作,据我们所知,真实而准确。Himedia™实验室Pvt Ltd保留随时更改规格和信息的权利。产品不适用于人类或动物或治疗用途,而是用于实验室,诊断,研究或进一步制造的使用,除非另有说明。本文包含的陈述不应被视为任何形式的保证,明示或暗示,也不应对侵犯任何专利的责任承担任何责任。
Pustimbara博士于2019年开始研究5-氨基甲酸(ALA),同时继续在日本进行研究。 ALA是一种天然存在的氨基酸,通常在体内产生,但也可以在补充剂和治疗中外源使用。目前,它通常用于用于医疗目的的癌症的光动力诊断,但ALA具有在其他疾病的药物治疗中的巨大潜力。 Pustimbara博士开始了他的研究,该研究对在干细胞培养物中使用ALA的试验进行了一种称为线粒体脑病,乳酸性酸中毒和中风样发作(称为Melas综合征)的罕见疾病。迄今为止,尚无对疾病产生重大影响的治疗方法,Pustimbara博士发现,使用IPS细胞系并将ALA和SFC一起使用可以改善与线粒体功能相关的蛋白质的表达。此外,我们对脂肪细胞祖细胞的分化过程进行了研究,发现使用ALA和SFC大大减少了在3T3-L1分化过程结束时产生的脂肪细胞量。 Pustimbara博士在他的博士研究中使用了ALA和Hemin在癌细胞中使用的不同组合。 Hemin是一种含有氯的含铁的卟啉,由血液中常见的血红素组形成。使用胃癌细胞的研究表明,ALA和HEMIN可以通过增加细胞内PPIX积累和活性氧的产生来降低癌细胞的存活高达18%(Pustimbara等,2024)。除了第一个发现这一点的研究外,我们发现ALA和HEMIN的结合可能是在癌症疾病中使用光动力疗法的另一种选择。
The mix contains excipients which ensure reliable performance in crude saliva samples and in the presence of PCR-inhibitory compounds that include but are not limited to: standard laboratory chemicals (SDS, guanidine, and ethanol), and biological sample inhibitors, such as those found in blood samples (hemin, hematin, haemoglobin, heparin, IgG immunoglobulins , lactoferrin,柠檬酸钠),尿液(尿素),植物和环境样品(腐殖酸,儿茶素,槲皮素,单宁酸,纤维素和氯聚氯基)。
z-DNA和G-四链体DNA在生物膜基质中很丰富,并且使用与鼠植入物相关的骨髓炎模型在体外和体内生长的生物膜中通常存在于网络类似结构中。在体外,在生物膜生长期间没有NaCl或机械摇动的情况下,或在EDNA或外多糖产生的细菌菌株中没有形成结构。因此,我们推断出EDNA和多糖相互作用,当通过盐稳定时,在机械应力下导致非典型的DNA结构,我们证实了来自感染植入物的生物膜中的G-四链体DNA和Z-DNA也存在。哺乳动物DNase I缺乏针对Z-DNA和G-四链体DNA的活性,而微球菌核酸酶可能会降解G-四链体DNA,而S1 Aspergillus核酸酶可能会降解Z-DNA。因此,源自金黄色葡萄球菌的微球菌核酸酶可能是分散生物膜在葡萄球菌中的关键。除了其结构作用外,我们首次表明,生物膜中的埃德纳在Hemin存在下形成具有过氧化物酶样活性的DNAZyme。虽然过氧化物酶是针对病原体防御的一部分,但我们现在表明生物膜可以在细胞外基质中具有内在的过氧化物酶活性。
J0208 Injection, Sodium Thiosulfate, 100 Mg J0223 Injection, Givosiran, 0.5 Mg J0224 Injection, Lumasiran, 0.5 Mg J0584 Injection, Burosumab-Twza 1 Mg J0596 Injection, C1 Esterase Inhibitor (Recombinant), Ruconest, 10 Units J0597 Injection, C-1 Esterase Inhibitor (Human), Berinert, 10 Units J0840 Injection, Crotalidae Polyvalent Immune Fab (Ovine), Up To 1 Gram J1305 Injection, Evinacumab-Dgnb, 5mg J1640 Injection, Hemin, 1 Mg J1743 Injection, Idursulfase, 1 Mg J1746 Injection, Ibalizumab-Uiyk, 10 Mg J1931 Injection, Laronidase, 0.1 Mg J2787 Riboflavin 5'-Phosphate, Ophthalmic Solution, Up To 3 Ml J2860 Injection, Siltuximab, 10 Mg J7170 Injection, Emicizumab-Kxwh, 0.5 Mg J7202 Injection, Factor Ix, Albumin Fusion Protein, (Recombinant), Idelvion, 1 i.u.J9032注射,Belinostat,10 mg J9057注射,Copanlisib,1 mg J9153注射,注射,脂质体,1毫克Daunorubicin和2.27 mg cytarabine J9262注射,注射emacetaxine mepescination,0.01 mg J9268,potation,10 MG J9268,POTET,POSTATICEN,PETATET,PORTATICENT,PERTATICENT,PERTATICEN注射,tagaxofusp-erzs,10微克J9295注射,死灵瘤,1毫克J9313注射,摩肌瘤pasudotox-tdfk,0.01 mg j9331注射,sirolimus蛋白质蛋白质颗粒,1 mg
艾玛·约翰逊 1* , 塔尔博特·金尼 1* , 汉娜·鲁伦 1* , 瑞安南·阿梅鲁德 2 , 黛莎·R·安德森 3 , 玛丽·安德森 2 , 阿内林·梅·安德烈斯 3 , 拉米尔·阿尔沙德 3 , 凯莉·巴宾-霍华德 3 , Dede G Barrigah 3 , Addison Beauregard 1 , Leah Beise 2 , 诺兰克里斯托弗森 3 , 伊利亚 L 大卫 3 , 卢克·德瓦德 1 , 玛雅迪亚兹 3 , 莉莉·唐纳 2 , 娜塔莉·埃林格 1 , Diellza Elmazi 3 , 莱利·恩格尔哈特 1 , Tamkanat Farheen 3 , 马克·M·菲格罗亚 3 , 索伦·弗拉顿 2 , 麦迪逊·弗拉什 1 , 伊丽莎白·冈萨雷斯 2 , 杰伦古尔斯比 4 , Estefania Guzman 3、Logan Hanson 3、John Hejl 4、Jackson Heuschel 3、Brianna Higgins 1、Brylee Hoeppner 1、Daijah Hollins 3、Josette Knutson 1、Rachel Lemont 3、Mia Lopez 1、Samantha Martin 4、Trinity May 2、Abby McDade 3、Nearyroth Men 2、Ellie Meyer 1、Caroline R Mickle 3、Sebastian Mireles 4、Avery Mize 1、Jaiden Neuhaus 1、April Ost 2、Sarah Piane 4、Makenzie Pianovski 3、Aliya Rangel 3、Jessica Reyes 4、Alexandra Ruttenberg 3、Jacob D Sachs 3、Brandon Schluns 3、Nicholas施罗德 4 , Peighton R Skrobot 3 , Cylie Smith 1 , Sydney Stout 1 , Andrew Valenzuela 1 , Kaiden P Vinavich 3 , Amber K Weaver 3 , Michael Yager 3 , Jose Zaragoza 4 , Gabriela Zawadzki 3 , Weam El Rahmany 3 , Nicole L. Scheuermann 3 , Hemin P Shah 3、Kayla L Bieser 5、Paula Croonquist 2、Olivier Devergne 3、Elizabeth E Taylor 3、Jacqueline K Wittke-Thompson 4、Jacob D Kagey 6§、Stephanie Toering Peters 1
姓名(名)姓名(姓)电台海报标题 Lauryn Adair 1 转运蛋白配体抑制斑马鱼 Dravet 综合征模型中的兴奋过度和代谢缺陷 Sarah Asby 2 癌症患者免疫检查点抑制剂介导的肾毒性新型检测方法的开发 Stephanie Bersie 3 吞噬细胞内坏死和凋亡颗粒细胞尸体的差异处理 Daniel Breiner 4 血红素改变铜绿假单胞菌烷基喹诺酮的产生 Robert Canfield 5 纳米颗粒递送核酸以诱导膀胱癌中的 1 型干扰素反应 Nai-Chia Chen 6 范围时间与 1 型糖尿病患者视网膜病变风险的关系 Sophia Clune 7 CHD1L 抑制剂 OTI-1100 的有效合成和衍生物作为新型癌症治疗药物 Bella Coenen 8 基于代谢组学鉴定以蓝莓为第一食物的婴儿血清和尿液中的蓝莓化合物 Mouna Dardouri 9 科罗拉多州在 2019 年至 2021 年 COVID-19 大流行期间处方药使用情况的变化:使用 ARIMA 模型进行中断时间序列分析 Baharak Davari 10 西罗莫司代谢物及其降解产物的免疫抑制活性 Anna Figueroa 11 神经元兴奋性过高的体外模型中的生物能量改变和氧化还原控制 Hanmant Gaikwad 12 用菁脂质对肿瘤进行体内涂抹:结构-活性关系 Paola Garcia Gonzalez 13 氧化应激导致 GFAP 和波形蛋白表达增加 Shilpa George 14 用于眼部药物的噬菌体样颗粒递送:等离子体波导共振光谱和使用体外和离体角膜模型的评估 Matthew Gibb 15 肺部炎症和病理在甲醛和氯化苦毒性模型中依赖于肥大细胞
简介:微生物在牙髓疾病的发病机制中起着重要作用。在提高牙髓样本中微生物检测、鉴定和计数的灵敏度方面取得了重大进展。本研究的目的是比较培养和全基因组扩增(WGA)随后进行 PCR 检测在根管化学机械制备(CMP)之前和之后的细菌检测中的效果。方法:分析了 10 颗患有原发性牙髓感染的单根牙。在 CMP 之前和之后用纸尖收集微生物样本,将其分成两组:(i)将培养测定样本接种到含有 5% 脱纤维羊血、甲萘醌和血红素的布鲁氏菌琼脂上,并在 36°C 下厌氧孵育 14 天; (ii) 从分子测定样本中提取 DNA,并用 Phi29 DNA 聚合酶通过等温链置换进行 WGA,然后进行 PCR 以确定细菌的存在。结果:在两种测定中,CMP 之前的样本都显示所有 10 颗牙齿中都存在细菌。然而,在 CMP 之后,在进行的测定中细菌检测有所不同(p = 0.0198)。通过 WGA 随后的 PCR 在 70%(10 个中的 7 个)的样本中检测到细菌的存在,而只有 10%(10 个中的 1 个)在培养方法中显示细菌生长。结论:在使用 NaOCl 作为 CMP 冲洗剂进行根管治疗后,WGA 随后的 PCR 相结合增加了从根管样本中检测到的微生物。因此,这种技术组合可以成为一种重要的工具,以提高根管研究中的微生物检测率。
摘要氰化物降解细菌假单胞菌伪钙化素cect 5344使用氰化物和不同的金属 - 氰化物配合物作为唯一的氮源。在氰基疾病的条件下,该菌株能够随着高达100 m m的汞生长,该菌株被细胞内积累。通过液态色谱分析进行定量蛋白质组学分析(LC-MS/MS)已应用于氰化物和汞菌株菌株的排毒5344的氧化氧化物替代氧化氧化剂的相关性,并突出氧化剂替代氧化剂的相关性,以阐明氰化物和汞对分子的分子体。和氰化物的同化,独立于存在或不存在汞。蛋白质在存在氰化物和汞存在下过度占主张的蛋白质包括汞转运蛋白,汞还原酶MERA,转录调节剂Merd,砷酸盐再培养酶和砷耐药蛋白和砷氧化物蛋白,硫氧还蛋白还原酶还原酶,谷胱甘肽s-转移蛋白与硫酸硫酸硫酸盐的硫酸盐和硫酸硫酸盐和硫酸硫酸盐和硫酸盐的硫酸盐和硫酸盐含量。和磷酸盐饥饿诱导的蛋白质phOH等。一项转换研究表明,从菌株CECT 5344基因组中存在的六个推定的MERR基因中,可能与汞耐药性/排毒抗性有关,只有MERR2基因在Cyanotrophic Condi-Condi-Coni-Coni-Condi-Coni-Coni-Condi-Conti-Diens下才有明显的诱导。A bioinformatic analysis allowed the identi fi cation of putative MerR2 binding sites in the promoter regions of the regulatory genes merR5 , merR6 , arsR , and phoR , and also upstream from the structural genes encoding glutathione S -transferase ( fosA and yghU ), dithiol oxidoreductase ( dsbA ), metal resistance chaperone ( cpxP ),以及参与法规传感(Vird)等的氨基酸/肽挤出机。