本文介绍了用于开发实用汽车雷达系统的单片 IC 技术,涵盖 HEMT 器件结构、IC 制造工艺、倒装芯片组装和电路设计。具有 0.15 µm 栅极的 InGaP/InGaAs HEMT 用于 W 波段的毫米波单片 IC,在 76 GHz 时提供 9 dB 的最大稳定增益。高度控制倒装芯片键合与柱互连被证明是一种低成本的组装方法。提出了一种用于模拟面朝下的共面波导的去嵌入技术。使用该技术设计了一个芯片组,包括 76 GHz 放大器、76 GHz 混频器、76 GHz SPDT 开关、38/76 GHz 倍频器、38 GHz 压控振荡器和 38 GHz 缓冲放大器。所制造的芯片组在汽车雷达系统中表现出了高性能。
提出一种采用双Si掺杂平面优化的InP基高电子迁移率晶体管(HEMT)抗辐照结构,在沟道层下方增加Si掺杂平面,使InP基HEMT的沟道电流、跨导、电流增益截止频率和最大振荡频率均有较大提升。此外,详细比较了单Si掺杂和双Si掺杂结构在75keV质子辐照(剂量分别为5×10 11 cm − 2、1×10 12 cm − 2和5×10 12 cm − 2)后的直流(DC)和射频(RF)特性及其降低率。两种结构的DC和RF特性均随着辐照剂量的增加而逐渐下降,尤其在5×10 12 cm − 2剂量下下降最为显著。此外,双硅掺杂结构的特性退化程度明显低于单硅掺杂结构,尤其是在较大的质子辐照剂量下。通过插入另一个硅掺杂平面来提高质子辐射耐受性可能是由于本征载流子大幅增加,这必然会大大削弱辐照诱导缺陷对载流子去除的影响。
在 GaN HEMT 的可靠性研究中,阈值电压 (V th ) 的波动对监测电漂移提出了挑战。虽然欧姆 p-GaN 等技术可以减轻 V th 波动,但可恢复电荷捕获的问题仍然存在。因此,在进行可靠性研究时采用新颖的特性分析方法至关重要,这样才能测量内在变化而不是即使在未退化的晶体管中也存在的电荷捕获效应。本文阐述的一种方法可以可靠且可重复地测量欧姆 p-GaN 栅极 HEMT GaN 的 V th 。在阈值电压测量之前立即引入专用的栅极偏置曲线以使其稳定。这个预处理阶段需要负偏置电压,然后再施加适当高的电压才能有效。所介绍的新协议也被证明适用于其他 HEMT GaN 结构。
2. 1 寄生电感 小信号外参数提取方法的关键是简化图 1 中某一特定偏置点处的等效电路。在冷夹断条件下( V ds =0 , V gs < - V th ),漏源电流源和输出电导可忽略不计,因此耗尽区可以用三个电容 C ig 、 C id 和 C igd 来表征,如图 2 所示。通常先提取寄生电容,无法消除寄生电感的影响,因此在提取寄生电容之前必须先去嵌入寄生电感 L g 、 L d 和 L s ,这也是本文方法与 Gao 等方法的不同之处
摘要:氮化镓高电子迁移率晶体管 (GaN HEMT) 是实现高效紧凑电力电子系统的关键技术。在电源转换器的设计阶段,对 GaN HEMT 进行正确的建模对于充分利用其优良特性和解决当前技术的局限性至关重要。学术界和工业界长期以来一直在深入研究功率 MOSFET 的电路模型。这些模型能够模拟数据表信息,它们通常由设备制造商以网络表的形式提供,可以在任何类型的 SPICE 类软件中模拟。本文首先强调了 MOSFET 和 GaN HEMT 在数据表层面的相似之处和不同之处。根据这一分析,讨论了可用于 GaN HEMT 建模的 MOSFET 电路模型的特征。这项任务是通过概述 MOSFET 电路模型的文献以及分析制造商网络表来完成的,从而突出了有效或适用于 GaN HEMT 的 MOSFET 模型。研究表明,一些模型可以适用于 GaN HEMT 器件,以模拟室温下的静态特性,而动态特性的 MOSFET 模型可用于 GaN HEMT 器件。这项研究使器件建模者能够通过使用一些成熟的 MOSFET 模型来加快 GaN HEMT 建模速度。从这个角度来看,还提供了开发精确的 GaN HEMT 模型的一些建议。
关键词:AlGaN、ALT、HEMT、高功率 RF 放大器、GaN、MTTF、可靠性、100V 摘要 据报道,在 100V 下工作的 RF GaN-SiC HEMT 在 200°C 通道温度下的中位故障时间 (MTTF) 为 1000 万小时。数据是从 300°C、315°C 和 330°C 三个温度下的加速寿命测试 (ALT) 推断出来的。为了捕获显著的统计变化,从来自不同批次的两个晶圆中挑选出每个温度的 10 个 ALT 代表性样本。故障设定为饱和漏源电流 (I DSS ) 下降 20%。在 100 V 下表征的 AlGaN/GaN on SiC HEMT 技术基于带背通孔的 0.5 m GaN 工艺。引言 最近有报道称,通过将工作电压提高到超过标准 50 V,可实现突破性的 2.3 kW UHF 单射频晶体管放大器 [1]。此外,用于 L 波段应用的 5 kW 单射频 GaN 晶体管将在 IMS-2022 [2] 上展示。在单个射频 GaN 晶体管放大器中实现数千瓦功率级将是促进兆瓦级射频系统中 TWTA 或其他真空电子器件替换的重要里程碑。为了实现这一技术转变,需要一种能够在 100 - 150 V 偏压下可靠工作的新型射频 GaN 晶体管。在更高电压下工作射频 GaN HEMT 的几个优点是:更高的功率密度、更高的效率、更高的阻抗和更宽的带宽;本文首次讨论高压射频 GaN HEMT 的可靠性。每当一种新的半导体技术被开发并推向市场时,人们就会明显担心其可靠性。在过去的 70 年中,人们开发了一套严格的测试来估计任何半导体技术在其预期工作条件和环境下的寿命 [3 – 4]。良好可靠性的普遍接受的指标是,在 200°C 的通道 (FET) 或结 (BJT) 工作温度下,现场寿命为 1000 万小时。为估计或推断这种寿命而开发的表征技术是通过加速寿命测试,其中半导体器件池在高温下运行以故意诱发故障,并测量每个池中 50% 的样品失效所需的时间。ALT
近年来,5G手机服务已成为主流,移动设备的数据传输变得越来越快,为公众提供基础设施非常方便。与移动设备通信的基站安装在地面上并且不动。如果它们由于自然或人为的灾难而受到损坏,则需要时间,可能会导致大规模和长时间的沟通关闭。相比之下,卫星通信系统在地面上发射到太空站的卫星之间建立了通信。地球站可以安装在车辆中,该车站可以迅速移动到必要的位置,以迅速建立和恢复通讯。此外,即使在很难安装基站的海洋上,卫星通信系统也可以在整个区域内提供通信。因此,卫星通信系统已成为我们生活中必不可少的一部分,因为它的多个优势是一种交流手段。
摘要 - 如今,缩小 HEMT 器件的尺寸对于使其在毫米波频域中运行至关重要。在这项工作中,我们比较了三种具有不同 GaN 通道厚度的 AlN/GaN 结构的电参数。经过直流稳定程序后,96 个受测 HEMT 器件的 DIBL 和滞后率表现出较小的离散度,这反映了不可否认的技术掌握和成熟度。对不同几何形状的器件在高达 200°C 的温度下的灵敏度评估表明,栅极-漏极距离会影响 R 随温度的变化,而不是 I dss 随温度的变化。我们还表明,中等电场下的 DIBL 和漏极滞后表现出非热行为;与栅极滞后延迟不同,栅极滞后延迟可以被热激活,并且无论栅极长度的大小如何都表现出线性温度依赖性。
BFOM = Baliga 功率晶体管性能品质因数 [K* µ *Ec 3 ] JFM = Johnson 功率晶体管性能品质因数(击穿,电子速度积)[Eb*Vbr/2 π ]
BFOM = Baliga 功率晶体管性能品质因数 [K* µ *Ec 3 ] JFM = Johnson 功率晶体管性能品质因数(击穿,电子速度积)[Eb*Vbr/2 π ]