伦理委员会的事实说明书涉及人类参与者的每个公共资助的研究项目都受到道德和科学评估的约束。项目的道德评估是由一个名为独立道德委员会(IEC)或机构审查委员会(IRB)的机构进行的。道德委员会成员可能包括患者倡导组织,外行人,神学家或法律代表以及医务人员的代表。以下事实说明了多能干细胞以及伦理委员会在人类多能干细胞研究中的作用和任务的介绍。人类医学研究中使用的多能干细胞是什么?人类多能干细胞(HPSC),无论是人类胚胎干细胞(HESC)还是诱导的多能干细胞(IPSC),在人类生物学研究中都起着重要作用。它们不仅是建模人类发育和疾病的优秀工具,而且还广泛用于其他研究领域,例如新药和治疗方法的测试和开发。当前的努力还集中于使用HPSC衍生细胞进行治疗,人类已经进行了首次临床试验。通过与干细胞相关的出版物和专利的数量越来越多,多能干细胞的使用将在全球范围内稳步增长。
高级高强度钢(AHSS)广泛用于汽车行业[1-7]。它们的高强度和延展性可以保证撞车性并减少汽车的整体体重,从而有助于更大的被动安全性和更少的污染排放[8-11]。在AHSS中,Martensitic Steels(MS-AHSS)用于生产对冲击安全性至关重要的汽车结构组件,例如前后保险杠梁,门抗入口杆,侧面凹凸增强型和屋顶横梁[12-14]。MS-AHSS的成功是其强度和延展性的结果,以及相对较低的成本[12,15]。但是,由于其微观结构,MS-AHSS特别容易受到氢的含量(HE)[16]。H可以在生产过程中被钢吸收,例如涂层,焊接,热处理,绘画[17]或在特定的服务条件下[12]。钢中氢(H)的存在可以降低强度,延展性,疲劳性和断裂韧性[2,12,17 - 21]。文献中已经描述了两个主要的现象:在明显的亚临界裂纹或最终断裂后的最终断裂,没有证据表明先前的裂纹形成和稳定的生长(在[22]中称为HESC和HEFT)。以前的情况是可以用断裂力学方法建模的,是文献中研究最多的情况,而没有亚临界裂纹生长的情况通常与延展性降低有关而没有强度损失[12,19,23 - 27]。MS-AHSS组件通常是制造的已经提出了几种机制来规定H的含义,以及其他机制:(i)HEDE(ii)帮助(iii)HAM [21,22,24,28]。
干细胞是无针对性细胞,具有发展为许多不同细胞类型的潜力[1]。它们在再生医学领域进行了深入研究,可以将供体干细胞移植到宿主中以替代受损细胞。但是,如果干细胞起源于外国来源,则宿主免疫系统可能会识别。在这里,可以使用免疫抑制来抑制此反应[2]。免疫抑制已用于有关脊髓损伤,肌萎缩性侧面硬化症(ALS)和黄斑变性等的干细胞试验[3-5]。用于脊髓损伤的干细胞治疗已进行了试验,以潜在地改善损伤后的感觉和运动功能[3]。 在ALS中类似地,干细胞已被用来直接再生受损的神经细胞,或者创建神经种群,为解散运动神经元提供支持的环境[5]。 在视网膜中,黄斑变性和Stargardt的黄斑营养不良是通过替代视网膜色素上皮(RPE)靶向的疾病[4,6]。 干细胞疗法的适用性迅速发展,以解决类似器官和功能(例如内耳和听力)中的神经缺陷。 为了促进这种翻译,必须评估和适应来自类似器官和细胞靶标的知识。 这在免疫抑制过程中尤其明显,在该过程中,必须解决器官特异性的药效学和动力学,并且先天和适应性器官特异性的免疫反应改变了。用于脊髓损伤的干细胞治疗已进行了试验,以潜在地改善损伤后的感觉和运动功能[3]。在ALS中类似地,干细胞已被用来直接再生受损的神经细胞,或者创建神经种群,为解散运动神经元提供支持的环境[5]。在视网膜中,黄斑变性和Stargardt的黄斑营养不良是通过替代视网膜色素上皮(RPE)靶向的疾病[4,6]。干细胞疗法的适用性迅速发展,以解决类似器官和功能(例如内耳和听力)中的神经缺陷。为了促进这种翻译,必须评估和适应来自类似器官和细胞靶标的知识。这在免疫抑制过程中尤其明显,在该过程中,必须解决器官特异性的药效学和动力学,并且先天和适应性器官特异性的免疫反应改变了。许多不同的干细胞来源已用于再生研究,包括人类胚胎干细胞(HESC),人脐带衍生的细胞(HUDC)和诱导的多能干细胞(IPSC)。hESC衍生的RPE细胞存储并随时可用于任何患者的能力是一个优势[7]。但是,由于这些细胞不是从患者中得出的,因此必须进行免疫抑制疗法以防止排斥[8]。当使用同种异体干细胞进行移植时,通常需要进行免疫抑制以防止免疫排斥这些细胞。但是,免疫抑制与副作用的风险有关。这些范围从由于全身免疫抑制引起的感染,到特异性作用,例如糖尿病,恶心和腹泻[9,10]。在某些研究中已经采用了在这些领域中使用HLA匹配的细胞的使用,以减少受体中免疫抑制的需求,尽管关于同种异体移植干细胞的持续免疫排斥的争论仍然存在[11]。在某些报告中停止了免疫抑制后的许多月,已注意到干细胞移植物的长期存活[12]。这项系统评价的目的是分析用于视网膜和神经细胞的干细胞试验中使用的免疫抑制文献,这些文献是细胞类型
摘要:近年来,使用原代T细胞的免疫疗法在某些病理中彻底改变了医疗护理,但是与挑战性细胞基因组版,不足的细胞数量产生,仅使用自体细胞以及缺乏产品标准化有关的局限性限制了其临床使用。通过提供可自我更新的T细胞来源,可以从人类多能干细胞(HPSC)从人多能干细胞(HPSC)产生的T细胞提供巨大的优势,这些源可以很容易地在遗传上进行修饰并促进使用标准化通用的普遍存在的非现成的同种细胞产物和快速临床访问。尽管有潜力,但在进入临床环境之前,必须更好地理解与HPSC区分的T细胞的可行性和功能。在这项研究中,我们从T细胞(T-IPSC)产生了人类诱导的多能干细胞,从而保留已经重新组合的TCR,具有与人类胚胎干细胞(HESC)相同的特性。基于这些细胞,我们通过高效率,造血祖细胞(HPSC)分化了能够自我更新和分化为任何细胞血型的能力,除了DN3A胸腺祖细胞与几个T-IPSC线外。为了更好地理解分化,我们分析了不同细胞类型的转录组亲纤维,并证明与HIPSC分化的HPSC具有与脐带血造血干细胞(HSC)非常相似的pro纤维(HSC)。此外,分化的T细胞祖细胞在胸腺淋巴细胞的DN3A阶段具有类似的胸腺细胞。因此,利用这种方法,我们能够再生治疗性人类T细胞的前体,以便可能治疗多种疾病。
癫痫的科学摘要药物治疗仍然非抑制作用,大约三分之一的患者在医学上是难治性的。有效疗法的开发需要新颖的实验系统来建模癫痫发育。一个非常有前途的新平台是人类脑器官(或简单的器官),即3D培养物,其中由人类胚胎或诱导多能干细胞(HESC或HIPSC)产生特定的脑样结构。类器官概括了人脑的许多结构特征,并为各种神经系统疾病提供了独特的见解。我们生成了“融合”器官结构,其中兴奋性神经元促进性皮层(CX)和抑制性神经元间的神经节启动(GE)种群整合了整合,从而产生了建模神经回路组装和癫痫发育的理想平台。使用这种技术,我发现hESC衍生的融合器可以在包括复杂振荡(复杂的振荡)中显示内神经元间调节的自发神经网络活动。我进行的单细胞RNA测序表明,融合对于中间神经元细胞的存活也至关重要,因为未使用的GE类器官显示出年龄增加的中间神经元簇的逐渐丧失,与融合不同。i还表明,来自RETT综合征患者的HIPSC衍生的融合器官,一种与癫痫高度相关的遗传疾病,具有癫痫样活性和网络振荡的变化,而网络振荡与同基因控制器可以改变。我通过用抗塞氏剂药物丙戊酸钠或p53抑制剂pifithrin-α治疗来挽救了其中一些异常。这些数据表明,融合器官模型增强了中间神经元的生存,体外概括了与癫痫相关的异常,并为治疗验证和发现提供了新的平台。基于这些数据和最新的初步发现,我建议扩展这种方法,以模拟大脑区域特定细胞变化以及严重发育和癫痫性脑病(DEE)的生理表型。i最近从SCN8A基因中具有癫痫相关突变的患者中产生了融合CX+GE和海马+GE(H+GE)类器官。scn8a编码电压门控钠通道Na V 1.6和SCN8A中功能突变的增益导致毁灭性的DEE,称为早期婴儿癫痫性癫痫性脑病13(EIEE13)。胎儿癫痫发作的报道使脑器官特别适合模型EIEE13。我的初步数据提出了高度过度过度的表型,其特征是SCN8A突变体CX+GE GE融合体中活机体两种光子成像和高振幅局部场电位(LFPS)的突发性。有趣的是,SCN8A突变体H+GE融合并没有显示出相同的过度表现表型,而是缺乏锋利的波浪波纹(SWR)振荡。SWR被认为是与海马记忆巩固相关的间神经元依赖性振荡。基于这些数据,我假设SCN8A突变体脑过度刺激性是由皮质兴奋性神经元驱动的,而海马中的SCN8A突变导致SWR振荡活性中的间神经元依赖性缺陷。目标1:确定scn8a突变体性过度刺激性表型中GE衍生的抑制性抑制作用与CX衍生的兴奋性神经元的作用。假设CX兴奋性神经元中SCN8A GOF突变引起的皮质兴奋性将通过对“未粘合”与“混合”融合的钙成像和LFP记录进行测试。在混合融合中,CX或GE将是SCN8A突变体,另一半将是无突出的。目标2:确定地球衍生的抑制性中间神经元在海马锋利波浪波动中的作用。假设SCN8A GOF突变仅限于GE衍生的中间神经元将足以消除H+GE融合器官中的SWR振荡,将通过在AIM 1。在利用新兴,有前途和人类细胞的技术来模拟癫痫病时,该提案有可能提供对癫痫病理生理学的开创性见解。此外,这些研究还集中在EIEE13的病理生理变化上,这与治疗癫痫的治疗任务一致。使用癫痫患者IPSC衍生的类器官,其潜力用于个性化和特定于患者的疾病建模,与以患者为中心的护理的治愈任务保持一致。
1 Gallagher, M. D. 和 Chen‐Plotkin, A. S. 后 GWAS 时代:从关联到功能。Am J Hum Genet 102 , 717-730, doi:10.1016/j.ajhg.2018.04.002 (2018)。2 Hoffmann, A.、Ziller, M. 和 Spengler, D. 关注基于 ESC/iPSC 的精神疾病建模中的因果关系。Cells 9 , doi:10.3390/cells9020366 (2020)。3 Kampmann, M. 基于 CRISPR 的神经系统疾病功能基因组学。Nat Rev Neurol 16 , 465-480, doi:10.1038/s41582-020-0373-z (2020)。 4 Matos, M. R.、Ho, S. M.、Schrode, N. 和 Brennand, K. J. CRISPR 工程与基于 hiPSC 的精神基因组学模型的整合。Mol Cell Neurosci 107 , 103532,doi:10.1016/j.mcn.2020.103532 (2020)。5 Soldner, F. 等人。在两个早发性帕金森病点突变处产生完全不同的同源多能干细胞。Cell 146 , 318-331,doi:10.1016/j.cell.2011.06.019 (2011)。6 Gresch, O. 等人。将基因转移到原代细胞的新型非病毒方法。方法 33 ,151-163,doi:10.1016/j.ymeth.2003.11.009 (2004)。7 Ihry, R. J. 等人。p53 抑制人类多能干细胞中的 CRISPR-Cas9 工程。Nat Med 24 ,939-946,doi:10.1038/s41591-018-0050-6 (2018)。8 Das, D.、Feuer, K.、Wahbeh, M. 和 Avramopoulos, D. 使用干细胞建立精神障碍生物学模型。Curr Psychiatry Rep 22 ,24,doi:10.1007/s11920-020-01148-1 (2020)。 9 Zhang, X. H., Tee, L. Y., Wang, X. G., Huang, Q. S. 和 Yang, S. H. CRISPR/Cas9 介导的基因组工程中的脱靶效应。Mol Ther Nucleic Acids 4,e264,doi:10.1038/mtna.2015.37 (2015)。10 Stewart, M. P.、Langer, R. 和 Jensen, K. F. 通过膜破坏进行细胞内递送:机制、策略和概念。Chem Rev 118,7409-7531,doi:10.1021/acs.chemrev.7b00678 (2018)。11 Ohgushi, M. 等人。导致人类多能干细胞解离诱导凋亡的分子途径和细胞状态。 Cell Stem Cell 7 , 225-239, doi:10.1016/j.stem.2010.06.018 (2010)。12 Chen, G., Hou, Z., Gulbranson, D. R. 和 Thomson, J. A. 肌动蛋白-肌球蛋白收缩性是导致分离的人类胚胎干细胞活力降低的原因。Cell Stem Cell 7 , 240-248, doi:10.1016/j.stem.2010.06.017 (2010)。13 Okamoto, S., Amaishi, Y., Maki, I., Enoki, T. 和 Mineno, J. 使用优化的 ssODN 和 Cas9-RNP 进行高效的基因组编辑,实现单碱基替换。 Sci Rep 9 , 4811, doi:10.1038/s41598-019-41121-4 (2019)。14 Vakulskas, C. A. 等人。以核糖核蛋白复合物形式递送的高保真 Cas9 突变体可在人类造血干细胞和祖细胞中实现有效的基因编辑。Nat Med 24 , 1216-1224, doi:10.1038/s41591-018-0137-0 (2018)。15 Geng, B. C. 等人。一种用于人类诱导多能干细胞的简单、快速、高效的 CRISPR/Cas9 基因组编辑方法。 Acta Pharmacol Sin 41 , 1427-1432,doi:10.1038/s41401-020- 0452-0 (2020)。16 Singh, A. M. 一种单细胞克隆人类多能干细胞的有效协议。Front Cell Dev Biol 7 , 11, doi:10.3389/fcell.2019.00011 (2019)。17 Yumlu, S. 等人。使用 CRISPR/Cas9 对人类诱导多能干细胞进行基因编辑和克隆分离。方法 121‐122 , 29‐44, doi:10.1016/j.ymeth.2017.05.009 (2017)。18 Cobo, F. 等人。电子显微镜显示小鼠胚胎成纤维细胞中存在病毒,但在人类胚胎成纤维细胞或用于 hESC 维护的人类间充质细胞中不存在病毒:在干细胞库中实施微生物质量保证计划。克隆干细胞 10, 65-74,doi:10.1089/clo.2007.0020 (2008)。
本文档中提供的信息对于指定的批号和分析日期有效。此信息仅用于参考目的,不构成产品适用于任何特定用途的保证或保证。Revvity,Inc。,其子公司和/或分支机构(统称为“ REVVITY”)对使用本文档或本文所述的产品造成的任何错误或损害均不承担任何责任。REVVITY明确否认所有保证,包括对特定目的的适销性或适用性的保证,无论口头还是书面,明示或暗示,据称是由于任何贸易或任何交易的用法而引起的,与此处包含的信息或产品本身有关。CLS760672-R REV01