基于电阻转换(RS)效应的非挥发性存储设备由于其出色的特征性(例如良好的尺寸可伸缩性和较小的操作电压)而被认为是未来内存应用的最有前途的技术。RS效应基于在涂在电极上的电压下安装在金属电极之间的介电膜中的导电膜(CF)的生长[1,2]。虽然HFO 2是重新拉统设备的最广泛研究的电介质之一[3],但交替分层的纳米材料引起了人们的兴趣[4],因为筛选了介电层最适当的材料组合是Reram Fabrication的介电层的最佳组合。在以前进行的几项作品中,HFO 2 -AL 2 O 3纤维与单个HFO 2和Al 2 O 3薄膜相比,已经证明了高级RS特性。电阻开关行为已在Al 2 O 3 / HFO 2 BiLayer [5,6,7],Al 2 O 3 / HFO 2 / Al 2 O 3 Trilayer [4,7]和Pentalayer [7]结构Ald -Grown在225-250°C处,总厚度达到20 nm。在另一项研究中,Al 2 O 3 / HFO 2 / Al 2 O 3在150ºC下生长的三层,厚度为12 nm,能够证明多级切换特性[8]。周期性的HFO 2 -AL 2 O 3多层含有等量的HF和Al在250ºC时的厚度为6.5 nm [9]。然而,在后一项研究中,没有发现成分层的厚度。hf x al 1 - x o y纤维在240ºC下生长,分级填充,从而从9:1到1:4 [10]变化了HFO 2:Al 2 O 3 ALD循环比率。另一项研究表明,HFO 2 -AL 2 O 3双层的30 nm厚的纳米胺由1.2
afnia(HFO 2)基于硅河道铁电场效应晶体管(HFO 2 Si-fefet)已对非挥发性记忆进行了广泛的研究[1-7],这要归功于掺杂的hfo 2 [8]中发现铁电性的。HFO 2 Si-fefet的存储窗口(MW)大约是文献报告中的1-2 V [9-12],该窗口不满足其对在多位数存储单元中应用的要求。最近,通过优化铁电层和栅极侧层间层[13],在SI-FEFET中报告了最高10.5 V的大型MW [13]。但是,它没有给出层中层的材料。及其物理机制仍未报告和澄清。为了改善MW,通常有两种方法。当前方法之一主要集中于减少掺杂的HFO HFO 2铁电和Si通道之间的底部SIO X互层中的电场,从而抑制了在掺杂的HFO 2 /SIO X界面处的电荷捕获[14-17]。另一种方法侧重于改进SIO X数量。但是,仍然缺乏改善Si FeFet MW的有效方法。
与臭氧剂量的 HfO 2 -Al 2 O 3 /SiGe 双层器件(图 2h)相比,臭氧剂量的 Al 2 O 3 -HfO 2 -Al 2 O 3 /SiGe
HFO 2的基于抗抗抗抗抗抗抗抗抗曲线样薄膜正在越来越多地考虑用于商业设备。然而,即使有最初的承诺,电气特性(例如损耗切线和泄漏电流)的温度灵敏度仍未报告。50 nm厚,4个。%al掺杂的HFO 2薄膜是通过原子层沉积合成的,顶部和底部电极均为锡或pt。对它们的电容与温度的研究表明,pt/al:HFO 2/pt的相对介电介电常数为23.30 6 0.06在室温下,电容的温度系数(TCC)为78 6 86 ppm/c,而tin/al a al a al a fimel a tin/a al a a ilect ppm nectient ppm/c相对持续时间均为32. TCC为322 6 41 ppm/c。这两种设备的电容在1至1000 kHz上的电容差于125至125C。两个电容器在0.03均保持损耗切换,泄漏的电流密度为10 9 –10 7 A/cm 2在125至125至125 C中的泄漏密度在125至125 C之间。 0.79 J/cm 3在125至125 C范围内的51.79%6 2.75%的效率下。pt/al:HFO 2/pt电容器还保持稳定的ESD为9.83 6 0.26 J/cm 3,效率为62.87%62.87%6 3.00%,比同一温度范围内。在两个电容器中的这种低损耗及其热稳定性使抗抗纤维样,掺杂的HFO 2薄膜是温度稳定的微电子学的有希望的材料。
研究了快速热退火对射频溅射系统沉积的高 k HfO 2 超薄膜结构和电学性能的影响。分别在氧气和氮气环境下研究了薄膜特性以获得最佳快速热退火温度,以获得作为 MOS 器件结构的最佳电学效果。使用傅里叶变换红外光谱 (FT-IR) 详细研究了温度诱导退火对 HfO 2 /Si 界面的影响。分别通过椭圆偏振仪、XRD 和 AFM 研究了薄膜厚度、成分和微观结构,并显示了退火对这些参数的影响。采用 Si/HfO 2 /Si MOS 电容器结构研究了退火电介质薄膜的 I-V 和 C-V 特性。结果表明,在氮气环境下采用快速热退火 (RTA) 的 HfO 2 /Si 堆栈比在氧气环境下表现出更好的物理和电学性能。结果表明,RTA 改善了 HfO 2 /Si 的界面特性和 HfO 2 超薄膜的致密化。在氮气和氧气中分别以 700 C 退火后,沉积的薄膜为非晶态和正交晶系。我们发现,氮气退火样品的等效氧化物厚度、界面态密度、电容-电压滞后和漏电流均有所降低;此外,在正电压偏置和温度应力下,电荷俘获也几乎可以忽略不计。本文对结果进行了介绍和讨论。2011 Elsevier BV 保留所有权利。
在本文中,我们研究了在漏极侧加入 HfO 2 作为电介质并在源极侧加入硅堆栈对双栅极隧道 FET(DG-TFET)电气性能的影响。为此,我们将传统 TFET 结构与其他四种结构进行了比较,这四种结构的栅极电介质材料要么是同质的,要么是异质的,而漏极侧的绝缘体要么是 SiO 2 要么是 HfO 2 。此外,还提出了一种具有硅源堆栈的结构,并将器件的性能系数与其他对应结构进行了比较。我们的模拟结果表明,漏极侧存在 HfO 2 绝缘体会降低双极传导,而异质栅极电介质则会增强驱动电流和跨导。但是,与传统 TFET 相比,HfO 2 会略微降低源极-栅极和漏极-栅极电容。此外,在所研究的 50 nm 沟道长度 TFET 中,硅源极堆栈与异质栅极电介质和漏极侧的 HfO 2 绝缘体的结合,可实现更高的 I ON /I OFF 比、更低的亚阈值斜率 (S) 和更低的双极传导。
摘要:最近,某些挑战一直存在于pH传感器的应用中,尤其是在使用氧化物(HFO 2)薄膜作为感应层时,其中与敏感性,滞后和长期稳定性障碍性能有关的问题。微波退火(MWA)技术作为解决这些挑战的有前途的解决方案,由于其独特的优势,吸引人的吸引力很大。在本文中,首次研究了使用HFO 2作为传感膜的微波退火(MWA)处理对扩展栅场效应晶体管(EGFET)的传感行为的影响。选择了MWA处理的各种功率水平(1750 W/2100 W/2450 W)以探索最佳处理条件。使用X射线光电学光谱(XPS)和原子力显微镜(AFM)等技术进行了彻底的物理分析,以表征MWA处理的HFO 2传感薄膜的表面。我们的发现表明,MWA处理有效地增加了HFO 2传感薄膜中的表面位点(NS),从而导致EGFET的pH敏感性提高到59.6 mV/pH,并在长期稳定性中降低了滞后和滞后的降低和增强。这些结果表明,MWA提供了一种直接,能量良好的方法来增强EGFET中的总体HFO 2传感效果性能,为HFO 2应用程序提供了见解和更广泛的微电子挑战。
摘要HFO 2基于基于HF 0.5 Zr 0.5 O 2的铁电极,由于其CMOS的兼容性和强大的纳米级铁电性,近年来引起了极大的关注。但是,疲劳是铁电应用中最棘手的问题之一。基于HFO 2的铁电特性的疲劳机制不同于常规的铁电材料,并且很少报道了基于HFO 2的基于HFO 2的疲劳机制的研究。在这项工作中,我们制造了10 nm HF 0.5 Zr 0.5 O 2外延膜并研究疲劳机制。实验数据表明,在10 8个周期后,Remanent铁电化值降低了50%。值得注意的是,疲劳的HF 0.5 ZR 0.5 O 2外延膜可以通过施加电刺激来恢复。结合了温度依赖性的耐力分析,我们提出,HF 0.5 ZR 0.5 O 2膜的疲劳来自铁电PCA2 1与抗纤维自由PBCA之间的相变,以及固定的缺陷和抑制了偶极子。此结果提供了对基于HFO 2的胶片系统的基本理解,并可以为随后的研究和未来应用提供重要的指南。
本研究致力于脉冲直流反应磁控溅射氧氮化铪 (HfOxNy) 薄膜的技术和优化。采用田口正交表法优化 HfOxNy 薄膜的制备工艺,以获得具有最佳电气参数的材料。在优化过程中,通过对以氧氮化铪为栅极电介质的 MIS 结构的电气特性监测介电薄膜的参数。还检查了制备的 HfOxNy 层的热稳定性。结果显示,热处理后制备的薄膜的电气参数有所改善。即,我们观察到有益的平带电压 (Vfb) 值、CeV 特性的频率色散消失、有效电荷 (Qeffi/q) 降低以及所检查的 MIS 结构界面陷阱 (Dit) 密度降低。然而,与参考样品相比,介电常数值略低。证明了 HfO x N y 层在高达 800 °C 的温度下具有优异的稳定性。尽管观察到层体中结晶相的显著增加,但未发现电气性能或表面形貌的恶化。本研究的结果使所研究的采用脉冲直流反应磁控溅射制备的 HfO x N y 成为 MIS 结构和器件中栅极电介质的可能候选者。
表 5:2023-24 年度能源费用计算 详情 单位 2023-24 财年 辅助消耗 % 9.50% 总站热率 kCal/kWh 2500 煤炭 GCV kCal/kg 2865.76 石油 GCV(LDO) kCal/ltr 10000.00 石油 GCV(HFO) kCal/ltr 10000.00 特定煤炭消耗 kg/kWh 0.86 特定石油消耗-LDO ml/kWh 0.35 特定石油消耗-HFO ml/kWh 3.15 煤炭价格 Rs./MT 1622.39 二次石油价格-LDO Rs./kL 80561.66 二次石油价格-HFO Rs./kL 61885.46 每千瓦时变动费用(基准值)派萨/千瓦时 178.86