为新的和更大的问题开发智能决策支持系统驱动了人工智能(AI)的几个核心领域的发展,例如机器学习(ML)和约束编程(CP)。尽管ML和CP都成功地用于支持决策过程,但它们的组合尚未得到充分探索,尤其是在癌症研究领域。高级神经胶质瘤(HGGS)是大脑中最常见的恶性肿瘤。他们会影响各个年龄段的人,并且普遍致命。尽管进行了数十年的研究,但治疗方案缺乏靶向疗法,而是仅限于对肿瘤的手术切除(如果可能的话),然后使用辐射和DNA损伤诱导化学疗法进行治疗(Ostrom等,2018)。对这些有限和严厉的治疗的抵抗力在所有患者中都会发展出来,强调了对新的精密药房靶向方法的迫切需求。缺乏可用的治疗并不是由于缺乏努力。在过去的15年中,已经进行了超过400次临床试验,以测试新的治疗方法(Bagley等,2022),但没有显示明显的临床益处。在这一领域的一个重大问题是,对这些试验失败的原因有很糟糕的理解,因为为每个患者收集纵向样本需要开颅手术,因此在诊断后患者的短期内,高度侵入性且很少有动机的努力。因此,与其他癌症类型相比,患者衍生的细胞系和异种移植模型的可用性显着有限。总的来说,这最终意味着,当选择最合适的治疗高级神经胶质瘤的疗法时,我们正在盲目飞行。这要求将大规模基因组和功能数据与人工智能方法的紧急整合在一起,以提供决策支持工具,以提高HGG治疗的有效性,使其成为推动智能决策支持方法限制的理想应用。
儿童脑肿瘤是儿童癌症相关死亡的主要原因[1,2]。它们是一群异质性群体,具有不同的发育起源、基因组谱、治疗方法和预后。年幼儿童(三岁以下)的肿瘤通常起源于胚胎,而年龄较大儿童的脑肿瘤更可能来自神经胶质细胞[3,4]。外科、神经肿瘤学、神经放射学和放射肿瘤学的进展提高了某些肿瘤类型(如低级别神经胶质瘤和髓母细胞瘤)的患者生存率。然而,弥漫性中线神经胶质瘤、其他高级别神经胶质瘤 (HGG) 和大多数复发性儿童脑肿瘤患者的预后仍然不佳,因为目前的治疗策略无法将大多数患者的生存期延长超过几个月[5]。大多数高级别儿童脑肿瘤除了手术外,还需要强化化疗和局部或颅脑脊髓放疗,而这些治疗会对发育和认知产生毁灭性的长期影响。提高这类患者群体的生存率一直是大多数儿童癌症治疗联盟(如儿童肿瘤学组)的主要工作重点,但同样重要的目标是尽量减少化疗和电离辐射的短期和长期副作用(表 1)。自 2002 年 Pomeroy 等人发表了开创性研究,成功利用基因表达模式预测了中枢神经系统 (CNS) 胚胎肿瘤的结果以来,人们一直在齐心协力阐明驱动儿童脑肿瘤发生和发展的分子机制 [ 6 ]。这提高了诊断准确性,确定了潜在的治疗靶点,在某些情况下,实施了靶向治疗,以最小的脱靶效应实现肿瘤体积控制。在这篇综述中,我们旨在回顾针对儿童脑肿瘤的最新方法,这些方法以靶向分子治疗、免疫治疗和激光间质热治疗等较新的治疗方式为中心。
胶质母细胞瘤(GBM)是一种不良的预后恶性肿瘤,他的4级神经胶质瘤在手术切除后的标准疗法包括放射治疗(RT)和替莫唑胺(TMZ)的放射治疗(RT)和化学疗法(CT)。然而,预后仍然很差,而生存期为5%(1)。近年来,由于新药物和有效疗法,例如免疫检查点抑制剂(ICI),产物T细胞方法,基于树突状细胞的疫苗或这些组合,人们对癌症的免疫疗法有了重新兴趣。尽管有活跃免疫疗法的研究使用了不同类型的分子,但它们的结果尚未足够一致,无法获得FDA(2)的批准。GBM由于肿瘤相关因素而具有免疫抑制的微环境:抑制性细胞因子或检查点分子的过表达,肿瘤细胞上HLA表达的低水平,以及大量的培养调节T细胞(Treg)(Treg)(3)。因此,由于肿瘤细胞与微环境之间的相互作用,它仍然是一种侵略性癌症,其治疗选择有限,这需要对这两种成分进行更多靶向剂(4)。树突状细胞(DC)是最有效的抗原抗原细胞,因为它们在先天和适应性免疫反应之间的联系,成为对癌症产生特定免疫反应的一种有希望的方法(5)。关于在HGGS(高级神经胶质瘤)中使用树突状细胞疫苗接种,已发表了许多研究,并正在进行评估基于DC的疫苗在GBM患者中的安全性和效率(6,7)。2023年Oster等。2023年Oster等。此外,2014年发表了两个荟萃分析,表明HGG患者的生存率(OS)和无进展生存期(PFS)和DC疫苗接种。确定了成人GBM的主要III期临床试验,其中他引用了Kong,因为他的研究研究了细胞因子诱导的杀手(CIK)细胞,并结合了延长PFS的标准射射击化学疗法(8.1个月)(8.1个月)(8,9)。此外,两项最新的荟萃分析与证明在OS和PFS方面接受DC疫苗接种治疗的GBM患者的结果不同。作者同意了安全性,实际上他们没有报告严重的不良事件(AES),而不论
参考文献 1. Young A. 西尼罗河病毒。加州大学戴维斯分校兽医学系。2021 年 11 月 19 日。https://ceh.vetmed.ucdavis.edu/health-topics/west-nile-virus。2024 年 8 月 26 日访问。 2. 媒介传播的东部马脑炎和西尼罗河病毒威胁着马和其他哺乳动物,包括人类。密歇根州立大学兽医学院。https://cvm.msu.edu/vdl/client-education/newsletter/summer-2018/vector-borne-eastern-equine-encephalitis-and-west-nile-virus-threaten-horses-and-other-mammals- including-humans#:~:text=Prevalence%20of%20EEE%20a nd%20WNV,in%20the%20number%20equine%20WNV。访问时间:2024 年 8 月 26 日。3. 核心疫苗接种指南。美国马兽医协会网站。http://www.aaep.org/-i-165.html。访问时间:2023 年 8 月。4. Epp T、Waldner C、West K。萨斯喀彻温省马匹接种西尼罗河病毒疫苗的有效性。论文发表于:第 51 届美国马兽医协会会议论文集。2005;180-182。5. Epp T、Waldner C、Townsend HGG。2003 年萨斯喀彻温省西尼罗河病毒临床疾病发展相关因素的病例对照研究。Equine Vet J。2007;39:498-503。6. Davis EG、Zhang Y、Tuttle J 等人。接种灭活西尼罗河病毒疫苗的健康马匹抗原特异性淋巴细胞反应调查。兽医免疫学与免疫病理学。2008;126(3-4):293-301。7. Davis EG、Bello NM、Bryan AJ 等人。在 90 日龄或 180 日龄开始多价疫苗方案时健康马驹的免疫反应特征。马兽医杂志。2014。doi:10.1111/evj.12350。8. Cortese V、Hankins K、Holland R 等人。西尼罗河病毒血清阴性成熟马对西尼罗河病毒疫苗的血清学反应。马兽医杂志。2013;33:1101-1105。 9. 文件中的数据,截至 2015 年 12 月 31 日 WEST NILE-INNOVATOR 的 MDI 销售数据,Zoetis LLC。