免疫疗法已成为癌症治疗的有前途的策略。然而,由于免疫抑制性肿瘤微环境和相关的低肿瘤CD8 + T细胞(CTL),现有的免疫疗法在高级浆液卵巢癌(HGSC)中的活性较差。通过多种证据,包括人类HGSC肿瘤的综合性隔离,我们将miR-146a识别为HGSC中CTL内纤维的主要调节剂。肿瘤miR-146a表达与人HGSC肿瘤中的抗癌物质信号呈正相关,而将miR-146a传递到肿瘤中,导致ID8-P53 /和Ig10 Murine HGSC模型的肿瘤生长显着降低。增加miR-146a在肿瘤中的表达通过降低免疫抑制性嗜中性粒细胞并增加了CTL,从而改善了抗TU-MOR免疫反应。从机械上讲,miR-146a靶向IL-1受体相关的激酶1和肿瘤坏死因子受体相关因子6转录因子核因子K B信号途径的转轴分子在ID8-p53 /细胞中降低,并降低了下层中性粒细胞粒细胞化学上c-x-cotif Chokine lig < / <除了HGSC外,肿瘤miR-146a表达还与其他癌症类型(包括甲状腺,前列腺,乳腺癌和肾上腺皮质癌)的CTL进行了密切相关。总的来说,我们的发现突出了miR-146a克服免疫抑制并改善肿瘤中的CTL的能力。
卵巢癌是美国最致命的妇科恶性肿瘤。这种疾病的死亡率主要归因于早期检测和治疗耐药性的挑战。最近的研究表明,大多数高级别浆液性卵巢癌 (HGSC) 源自异常的输卵管上皮 (FTE) 细胞。人们在卵巢癌发病机制方面的这种思维转变促使人们努力识别正常 FTE 细胞转变的早期遗传和表观遗传变化,并促使它们迁移和定植于卵巢,最终导致侵袭性 HGSC。虽然识别这些早期变化对于生物标志物发现很重要,但 FTE 染色质表观遗传变异的出现也可能为早期检测、预防和治疗干预提供新的机会。在这里,我们全面概述了有关 HGSC 肿瘤发展之前的早期表观遗传重编程的当前知识、这些改变如何影响内在和外在的肿瘤特性,以及如何针对表观基因组来阻止 HGSC 肿瘤发生。© 2020 Elsevier Inc. 保留所有权利。
卵巢癌 (OC) 发病率低,这意味着任何筛查策略都需要高度敏感和高度特异。本研究探索了从血液中检测单个肿瘤相关细胞外囊泡上的多个共定位蛋白或糖基化表位的实用性。新型 Mercy Halo 卵巢癌检测 (OC 检测) 使用免疫亲和力捕获肿瘤相关细胞外囊泡,然后进行邻近连接实时定量 PCR 检测最多三种生物标志物的组合以最大程度地提高特异度,并测量多种组合以最大程度地提高灵敏度。使用来自 397 名女性的高级别浆液性癌 (HGSC) 病例对照训练集(EDTA 血浆样本)来锁定测试设计、数据解释算法以及癌症和非癌症之间的临界值。在来自 390 名女性(132 名对照者、66 名 HGSC、83 名非 HGSC OC 和 109 名良性患者)的独立盲法病例对照血清样本集中,验证了性能并与癌症抗原 125 进行了比较。在验证研究中,OC 测试显示特异性为 97.0%(128/132;95% CI,92.4% e 99.6%),HGSC 灵敏度为 97.0%(64/66;95% CI,87.8% e 99.2%),曲线下面积为 0.97(95% CI,0.93 e 0.99),检测到 73.5%(61/83;95% CI,62.7% e 82.6%)的非 HGSC OC 病例。与癌症抗原 125 相比,该检测在良性卵巢肿瘤、非卵巢癌和炎症性疾病患者中表现出更少的假阳性。这种新检测的综合敏感性和特异性表明它可能在 OC 筛查中具有潜力。(J Mol Diagn 2024,-:1 e 20;https://doi.org/10.1016/j.jmoldx.2024.09.001)
大多数卵巢癌病例,无论亚型如何 [8]。PIK3CA 突变被认为是驱动突变,为高级别浆液性癌 (HGSC) 提供转化优势 [9]。多变量生存分析显示,PI3K 蛋白表达与晚期 HGSC 的较差生存率相关 [10]。此外,一些研究表明,PI3K 通路中的突变率,尤其是 AKT 和 p70S6K 中的突变率,包括错义突变和扩增,与较高的化学耐药率相关 [11,12]。化学增敏可以通过下调 PI3K 和/或其下游效应物 AKT 和 mTORC1 来实现 [13-15]。PI3K 在 OvCa 中的活性增加及其作为几种促癌通路的枢纽的作用,解释了其在癌症进展中的许多影响,包括致癌转化、
摘要:DNA 损伤反应 (DDR) 是一组用于检测和修复 DNA 损伤的信号通路,当细胞暴露于内源性或外源性 DNA 损伤剂时,它可以维持基因组稳定性。这些通路的改变与癌症的发展密切相关,包括最致命的妇科恶性肿瘤卵巢癌 (OC)。在 OC 中,DDR 的失败不仅与发病有关,还与进展和化学耐药性有关。已知大约一半最常见的亚型高级别浆液性癌 (HGSC) 在通过同源重组 (HR) 修复 DNA 双链断裂 (DSB) 方面存在缺陷,目前的证据表明,所有 HGSC 可能都至少在一条 DDR 通路中存在缺陷。这些缺陷不仅限于 HGSC; ARID1A 突变存在于 30% 的子宫内膜样 OC 和 50% 的透明细胞 (CC) 癌中,也被发现会导致 DNA 修复缺陷。此外,DDR 变异在不同 OC 亚型中的比例各不相同。在这里,我们概述了维持基因组稳定性的主要 DNA 修复途径及其在 OC 中的失调。我们还概括了支持针对 DDR 对抗疾病的潜力的临床前和临床数据。
卵巢癌发生是一个多步过程,涉及癌细胞及其周围微环境之间的基因突变,表观遗传变化和相互作用。大多数卵巢癌源自上皮,特别是来自输卵管上皮和卵巢表面上皮。高级浆液性癌(HGSC)是最常见和最具侵略性的亚型,通常与铅肿瘤抑制基因(如TP53和BRCA1/2)的突变有关。然而,不同患者和肿瘤内部卵巢癌的异质性本身使得很难从传统的细胞系或动物模型概括到真正的患者结局。
摘要◥同源重组(HR) - 有效的癌症是对多ADP核糖聚合酶抑制剂(PARPI)的现象,它们在治疗高级浆液性癌症(HGSC)方面表现出临床效率。然而,大多数患者将复发,而获得的PARPI耐药性正在成为紧迫的临床问题。在这里,我们生成了七个单细胞克隆,具有源自PARPI敏感的TP53 /和BRCA1 /上皮细胞系的获得的PARPI电阻,该电阻使用CRISPR / CAS9产生。这些克隆显示出不同的电阻机械机械,并且有些克隆同时提出了多种电阻机制。与敏感细胞系相比,对克隆的基因组分析揭示了独特的转录和突变性方案,并增加了基因组不稳定性。克隆进化分析表明,获得的parpi抗性是通过从本质上不稳定和异源细胞种群中的克隆选择引起的
肿瘤内异质性高和癌细胞群进化是血液系统恶性肿瘤和实体瘤治疗耐药性的主要驱动因素 1–5 。在急性髓系白血病 (AML) 中,大量单细胞基因组分析已在细胞亚群水平上绘制了疾病进展和治疗耐药性的克隆进化过程,并破译了与化疗耐药性、复发和临床结果有关的白血病细胞亚群中的细胞层次和重编程 6–9 。同样,在实体瘤中,高级别浆液性卵巢癌 (HGSC) 患者的克隆分析和纵向取样揭示了进化轨迹,具有与治疗反应相关的不同基因组和形态学特征 10 。尽管有如此丰富的信息,我们仍然缺乏针对化疗耐药亚群的方法,以提高复发患者的二线治疗效果,或通过同时抑制具有足够高效力的多个白血病细胞亚群来避免对一线疗法产生耐药性
因此,肿瘤组织的客观和早期鉴定对于最佳手术尝试至关重要。最近的进步揭示了卵巢肿瘤微环境的复杂组织,突出了细胞间途径7作为潜在的治疗靶标。量化生物分子特征的新方法揭示了可能揭示新的治疗靶标的详细结构和分子变化。手术病理性分期系统(国际妇科和产科阶段联合会,FIGO分期)仍然是确定衰落卵巢癌阶段的最关键工具。8癌症的FIGO分期标准基于卵巢肿瘤细胞的扩散程度。这是使用活检切片上的对比染色确定的,然后是病理学家的显微镜检查,这是目前的卵巢癌诊断临床标准。苏木精和曙红(H&E)染色被广泛用于鉴定细胞和细胞外成分。上皮癌是最常见的组织类型,约占卵巢癌,输卵管和腹膜的90%。9,10在高级浆液性癌(HGSC)中,病理学家确定了各种建筑 -
其原因是缺乏有效且可耐受的治疗选择,以及晚期疾病时症状不典型 [2]。卵巢癌包含多种类型的癌症,包括上皮性卵巢癌、生殖细胞卵巢肿瘤、性索间质肿瘤、小细胞癌和卵巢癌肉瘤。上皮性卵巢癌约占所有卵巢癌的 85%–90% [3],且具有多种亚型。其中,高级别浆液性癌 (HGSC) 最为常见,占卵巢癌的 70% 以上 [4]。上皮性卵巢癌可分为两种主要类型:1 型和 2 型。1 型上皮性卵巢癌包括低级别浆液性癌、粘液癌、子宫内膜样癌和透明细胞癌,这些癌的侵袭性较低,因为它们倾向于局部生长和晚期转移 [5]。 2 型上皮性卵巢癌包括高级别浆液性癌、癌肉瘤和未分化癌,这些癌具有生物侵袭性,通常出现在疾病晚期,小体积原发性病变转移的风险较高 [6]。1 型肿瘤的特征是 ARID1A、BRAF、CTNNB1、KRAS、PIK3CA 和 PTEN 的基因组变异,而 2 型肿瘤的特征是 TP53 和 BRCA 的基因组变异 [7]。