分子氧(O 2)是一种通用电子受体,最终在所有后生动物的线粒体呼吸链中合成为ATP。因此,缺氧生物学已成为细胞进化,代谢和病理学的组织原理。缺氧诱导因子(HIF)介导肿瘤细胞,以产生一系列葡萄糖代谢适应,包括调节葡萄糖分解代谢,糖原代谢和葡萄糖对低氧的生物氧化。由于HIF可以调节癌细胞的能量代谢并促进癌细胞的存活,因此靶向HIF或HIF介导的代谢酶可能成为癌症的潜在治疗方法之一。在这篇综述中,我们总结了可以诱导肿瘤中低氧葡萄糖代谢的细胞重编程的既定且最近发现的自主分子机制,并探索了靶向治疗的机会。
人类呼吸系统和循环系统紧密协作,确保向所有细胞输送氧气,这对于 ATP 生成和维持生理功能和结构至关重要。在氧气供应有限的情况下,缺氧诱导因子 (HIF) 保持稳定,并在维持细胞缺氧适应过程中发挥根本作用。HIF 最初是在研究促红细胞生成素产生调节时发现的,它影响生理和病理过程,包括发育、炎症、伤口愈合和癌症。HIF 通过增强腺苷生成和受体信号传导来促进细胞外腺苷信号传导,代表一种内源性反馈机制,可抑制过度炎症、支持损伤消退并增强缺氧耐受性。这对于涉及组织缺氧的疾病尤其重要,例如急性呼吸窘迫综合征 (ARDS),这种疾病在全球范围内带来了重大的健康挑战,而没有特定的治疗方案。因此,扩大 HIF 介导的腺苷产生和受体信号传导的药理学策略非常重要。
2025年的发展金融和活动 2025财政年度的总发展融资预算分配为$ 208,023,371,由三个资金来源组成:资本改善计划(CIP),蒙哥马利住房基金(HIF)和联邦赠款。 最重要的资金来源是该县的CIP,预算为25财年的预算为160,495,072美元,其次是HIF,估计为33,791,850美元。 由CDBG和房屋组成的联邦资金占开发金融预算的6%或1,370万美元。 重要的是要注意,这些数字反映了先前的结转和超出通过预算的额外拨款。 DHCA的资金为可能不会前进的项目提供了显着的差距融资。 以下是FY2025负担得起的住房开发预算的概述。2025财政年度的总发展融资预算分配为$ 208,023,371,由三个资金来源组成:资本改善计划(CIP),蒙哥马利住房基金(HIF)和联邦赠款。最重要的资金来源是该县的CIP,预算为25财年的预算为160,495,072美元,其次是HIF,估计为33,791,850美元。由CDBG和房屋组成的联邦资金占开发金融预算的6%或1,370万美元。重要的是要注意,这些数字反映了先前的结转和超出通过预算的额外拨款。DHCA的资金为可能不会前进的项目提供了显着的差距融资。以下是FY2025负担得起的住房开发预算的概述。
肥厚性心肌病(HCM)是由编码结构性肉类蛋白的基因中的常染色体示例突变引起的,是最常见的遗传性心脏病。HCM与心肌肥大,纤维化和心室功能障碍有关。缺氧诱导的转录因子1α(HIF-1α)是细胞缺氧反应的中心调节剂,与HCM相关。但其确切的作用仍有待阐明。因此,在已建立的α-MHC 719/+ HCM小鼠模型中研究了心肌细胞特异性HIF-1A敲除(CHIF1AKO)的影响,该模型表现出人类HCM的经典特征。结果表明,HIF-1α蛋白和HIF靶标在α-MHC 719/+小鼠的左心室组织中上调。心肌细胞特异性的HIF-1A的特异性消除使疾病表型钝化,这是左心室壁厚减小,心肌纤维化降低,SRX/DRX状态和ROS产生的降低所证明的。chif1ako在α-MHC 719/+小鼠的整个转录组和蛋白质组学分析中诱导了肥厚和纤维化的左心室重塑信号的归一化。来自早期HCM患者的血清样品的蛋白质组学显示HIF的显着调节。 这些结果表明HIF信号与小鼠和人类HCM发病机理有关。 HIF-1A的心肌细胞特异性敲除可减轻小鼠模型中的疾病表型。 靶向HIF-1α可能是减轻HCM疾病进展的治疗选择。来自早期HCM患者的血清样品的蛋白质组学显示HIF的显着调节。这些结果表明HIF信号与小鼠和人类HCM发病机理有关。HIF-1A的心肌细胞特异性敲除可减轻小鼠模型中的疾病表型。 靶向HIF-1α可能是减轻HCM疾病进展的治疗选择。HIF-1A的心肌细胞特异性敲除可减轻小鼠模型中的疾病表型。靶向HIF-1α可能是减轻HCM疾病进展的治疗选择。
摘要 转录因子 (TF) 通常被认为是一种模块化结构,包含结构良好的序列特异性 DNA 结合结构域 (DBD) 与无序的激活结构域 (AD) 配对,后者负责靶向辅助因子或核心转录起始机制的蛋白质-蛋白质相互作用。然而,这种简单的分工模型无法解释为什么在体外确定的具有相同 DNA 结合序列特异性的 TF 在体内表现出不同的结合谱。缺氧诱导因子 (HIF) 家族提供了一个鲜明的例子:在几种癌症类型中异常表达的 HIF-1 α 和 HIF-2 α 亚基异构体在体外识别相同的 DNA 基序——缺氧反应元件 (HRE)——但在体内仅共享其靶基因的一个子集,同时在某些情况下对癌症的发展和进展产生对比的影响。为了探究介导异构体特异性基因调控的机制,我们使用活细胞单粒子追踪 (SPT) 来研究 HIF 核动力学及其在遗传扰动或药物治疗下的变化。我们发现 HIF-α 亚基及其二聚化伴侣 HIF-1β 表现出独特的扩散和结合特性,这些特性对浓度和亚基化学计量极为敏感。使用域交换变体、突变和 HIF-2α 特异性抑制剂,我们发现尽管 DBD 和二聚化域很重要,但染色质结合和扩散行为的另一个主要决定因素是含有 AD 的内在无序区域 (IDR)。使用 Cut&Run 和 RNA-seq 作为正交基因组方法,我们还证实了 IDR 依赖的 HIF 靶基因特定子集的结合和激活。这些发现揭示了 IDR 在调节 TF 搜索和结合过程中以前未被重视的作用,这有助于染色质上的功能性靶位点选择性。
TME是各种细胞类型的异质和动态组装。这些基质细胞是TME中的关键参与者。它们分泌生长因子,细胞因子和ECM蛋白,为肿瘤细胞创建一个支持性利基。CAF也有助于脱木质,这是一种纤维化反应,可能会阻碍药物递送。TME的免疫景观非常复杂,具有抗肿瘤和促肿瘤免疫细胞。肿瘤相关的巨噬细胞,髓样衍生的抑制细胞以及调节性T细胞通常会促进免疫逃避和肿瘤进展。相反,细胞毒性T细胞和天然杀伤细胞在抗肿瘤免疫中起关键作用。TME内的ECM为肿瘤细胞提供结构支持和生化信号。ECM的改变,例如刚度增加和重塑,是癌症的标志。 肿瘤细胞通过激活低氧诱导因子(HIF)来适应缺氧,该因子驱动血管生成,代谢重编程和免疫逃避。 代谢改变,例如WarburgECM的改变,例如刚度增加和重塑,是癌症的标志。肿瘤细胞通过激活低氧诱导因子(HIF)来适应缺氧,该因子驱动血管生成,代谢重编程和免疫逃避。代谢改变,例如Warburg
缺氧诱导因素和氧稳态氧稳态是人类面临的最艰巨和最根本的挑战之一:为成人体内约 50 万亿个细胞中的每一个细胞持续精确地提供充足的 O 2 ,以满足其氧化磷酸化和数百种其他需要 O 2 的生化反应的代谢需求 (1)。使这一挑战更加复杂的是,全身细胞所处的组织微环境中的 O 2 水平差异巨大:气道上皮细胞暴露于 21% 的 O 2 中,而在小鼠胸腺中,记录到的中位氧分压 (pO 2 ) 为 7.6 mmHg,相当于大约 1% 的 O 2 (2)。即使在同一个器官内,组织氧合情况也会有很大差异:在肾脏中,pO 2 从外皮质的 70 mmHg 到内髓质的 10 mmHg 不等 (3)。在转录水平上,维持氧稳态的挑战由缺氧诱导因子 (HIF) 的作用来应对,这些因子会介导每个细胞转录组的重编程,以应对 O 2 可用性的降低(即缺氧)。HIF 调节氧化代谢和糖酵解代谢之间的平衡,以此来匹配 O 2 需求和可用供应(4、5),并通过激活控制红细胞生成(6、7)和血管生成(8、9)的基因转录来刺激 O 2 输送增加,从而分别增加全身和局部的 O 2 供应。在任何受到缺氧影响的细胞中,数百到数千个基因的表达都会增加或减少。例如,当 SUM159 人类乳腺癌细胞从
骨细胞在低氧环境中起作用,以控制骨形成的关键步骤。FGF23是一种临界磷酸盐调节激素,受到急性和慢性疾病中低氧/铁的刺激,但是指向此过程的分子机制尚不清楚。我们的目标是确定由氧气/铁利用变化驱动的FGF23产生的骨细胞因子。低氧诱导因子 - 丙酰羟化酶抑制剂(HIF-PHI)稳定HIF转录因子,正常小鼠以及骨细胞样细胞中的FGF23增加;在有条件骨细胞FGF23缺失的小鼠中,抑制了循环的IFGF23。诱导型MSC细胞系(“ MPC2”)接受了FG-4592治疗和AtacSeq/RNASEQ,并证明了分化的骨细胞显着提高了HIF基因组可及性与祖细胞的基因组可及性。整合基因组学还显示,羟化羟化酶EGLN1(PHD2)染色质访问性和表达增加,与骨细胞分化呈正相关。在患有慢性肾脏疾病(CKD)的小鼠中,PHD1-3酶被抑制,与该模型中的FGF23上调一致。体内骨细胞的有条件损失导致FGF23上调,这与我们的发现一致,即缺乏PHD2(CRISPR PHD2-KO细胞)组成型激活的FGF23的MPC2细胞系被HIF1α封锁了。在体外,PHD2-KO细胞失去了铁介导的FGF23的抑制,并且该活性未被PHD1或-3弥补。。 总的来说,骨细胞在分化过程中适应氧/铁感应,并且对生物利用铁直接敏感。在体外,PHD2-KO细胞失去了铁介导的FGF23的抑制,并且该活性未被PHD1或-3弥补。总的来说,骨细胞在分化过程中适应氧/铁感应,并且对生物利用铁直接敏感。此外,PHD2是骨细胞FGF23产生的关键介体,因此我们的集体研究可能为涉及涉及氧气/铁感应障碍的骨骼疾病提供新的治疗靶标。
在他们的研究中名为“在BI 0.5 SB 1.5 TE 3中以压力引起的超导性的环境压力进行的“创造,稳定和调查”,发表在美国国家科学院学院会议录中,Liangzi Deng教授Liangzi Deng和Paul Ching-wu Chu of Antival of Antival of Antival of Antival of Antival of Antival of Antival of Bythy of Bythyics of Ankity of Nower of Underc of Suff the Unding In In Inked Hif In In Inky In In Ingun In Ingun In In Ki5 S.5 SB 1(B 1.5 SB)BB。压力 - 没有改变其化学或结构的压力。