摘要:Orch-Or模型无法解释濒死或昏迷患者观察到非人类智能接触的原因,而且它忽视了人类的永生性。因此,提出了一个新模型来回答所有问题,并为人类永生找到解决方案。在这个模型中,智能是一种量子粒子,通过加速每个火花中的光子;来自彭罗斯图弯曲时空的黑框和白框区域,并通过连接到粒子;使它们变得智能。就像希格斯玻色子,它与粒子结合并赋予它们质量。每个人的基本智能在原代细胞诞生时进入我们的时空区域,即使在死亡后也保持自由。自由智能与大脑相互作用,渗透到患者的大脑中,并诱发非人类智能接触。另一方面,健康人的大脑由于活动性高,没有空闲空间来存储自由智能的信息,因此健康人看不到非人类智能。这一模型不仅解释了濒死病人与非人类智慧接触的原因,而且通过寻找人体内的流氓智慧,为治疗不治之症提供了解决方案。
在阳米尔斯仪表上的欧几里得凯奇表面表面表面含有直接经验意义的仪表对称性组通常被认为是g des = g des = g i /g∞0,其中g i是一个具有边界的符号对称性和g∞0是其由构成理论构成的构成的构成的转化。这些群体分别被识别为渐近变化的仪表变换,以及渐近身份的量规变换。在Abelian案例中G = U(1)然后将其标识为全球仪表对称组,即u(1)本身。然而,在数学上还是概念上,这一说法的已知派生都是不精确的。我们针对阿贝里安和非亚伯仪理论严格得出了物理量规组。我们的主要新观点是,限制g i的要求不仅源于能量的有限,而要依赖于Yang-Mills理论的Lagrangian的要求,以在切实的捆绑包上定义以配置空间。此外,我们解释了为什么商恰好由每个同型类别的全球仪表组的副本组成,即使各种规范变换显然具有不同的渐近速率收敛速率。最后,我们在框架中考虑了Yang-Mills-Higgs理论,并表明渐近边界条件在不间断和破碎的相处有所不同。1
相互作用的费米式系统的自发对称破坏是多体理论的主要挑战,这是由于新独立散射channels的扩散曾经在对称阶段不存在或退化。一个例子是由哈伯德模型的铁 /抗磁性破碎对称相(BSP)给出的,其中旋转横向和自旋宽量义通道中的顶点与计算能力的随之增加,以增加计算的计算能力。我们将非扰动的两粒子一致的方法(TPSC)传达出Hubbard模型中的磁相(2)磁相,提供了一种有效的方法,具有牢固的相关性。我们表明,在BSP中,易感性的总规则执行必须伴随着修改的间隙方程,从而导致订单参数,顶点校正和保留金色模式的间隙特征的恢复。然后,我们将理论应用于半填充的立方晶格中哈伯德模型的抗铁磁相。我们将双重占用和交错磁化的结果与使用图表的蒙特卡洛获得的结果进行了比较。我们证明了verx校正在降低希格斯在自旋长态敏感性中的准粒子激发差距方面的核心作用,从而产生了可见的希格斯模式。
1 奥本大学电气与计算机工程系,美国阿拉巴马州奥本 36849 2 奥本大学物理系,美国阿拉巴马州奥本 36849 3 奥克兰大学物理系,美国密歇根州罗彻斯特 48309 4 加利福尼亚大学圣地亚哥分校物理系,美国加利福尼亚州拉霍亚 92093 5 伦敦大学学院伦敦纳米技术中心,17-19 Gordon Street,伦敦,WCH1 0AH,英国 6 基础科学研究所 (IBS) 量子纳米科学中心,首尔 03760,韩国 7 梨花女子大学物理系,首尔 03760,韩国 8 伦敦大学学院电子电气工程系,罗伯茨大厦,伦敦,WC1E 7JE,英国 9 东北大学 WPI 高级材料研究中心,2-1-1,Katahira,仙台 980-8577,日本 10 爱丁堡大学物理与天文学院凝聚态物理与复杂系统研究所,英国爱丁堡,EH9 3FD 11 爱丁堡大学希格斯理论物理中心,英国 EH9 3FD 12 北卡罗来纳大学教堂山分校物理与天文系,美国北卡罗来纳州 27599 13 中国科学技术大学微电子学院,中国合肥 230052(日期:2023 年 8 月 29 日)
粒子物理学和超导性紧密相连。由超导电缆制成的磁铁,尤其是由铌钛制成的磁铁,可使高能束流在对撞机中循环,并为粒子探测器提供更强的磁场。LHC 是有史以来最大的超导机器,而它的两个探测器包含规模空前的超导磁体,使希格斯玻色子在五年前被发现。对更高性能机器的需求,例如 LHC 光度升级和未来的圆形对撞机,需要下一代导体,例如铌锡,而 CERN 正在朝着此类技术快速迈进。继 MRI 之后,粒子物理学是超导体公司的最大客户,而 ITER 聚变实验也对全球铌锡生产产生了巨大影响。超导磁体的发展离不开超导射频腔的快速发展,超导射频腔用于加速粒子束,这一点从 20 世纪 90 年代 LHC 前身 LEP 的升级,到如今欧洲 X 射线自由电子激光器和可能的线性对撞机的实现,都可见一斑。高温超导体有望实现性能飞跃,30 年前人们就发现了高温超导体,但至今仍是一个谜。欧洲核子研究中心 (CERN) 正在这一领域取得重要进展,并已启动培训下一代超导研究人员的计划。粒子物理学正与工业界一起帮助我们实现全部
粒子物理学和超导性紧密相连。由超导电缆制成的磁铁,尤其是由铌钛制成的磁铁,可使高能束流在对撞机中循环,并为粒子探测器提供更强的磁场。LHC 是有史以来最大的超导机器,而它的两个探测器包含规模空前的超导磁体,使希格斯玻色子在五年前被发现。对更高性能机器的需求,例如 LHC 光度升级和未来的圆形对撞机,需要下一代导体,例如铌锡,而 CERN 正在朝着此类技术快速迈进。继 MRI 之后,粒子物理学是超导体公司的最大客户,而 ITER 聚变实验也对全球铌锡生产产生了巨大影响。除了超导磁体之外,超导射频腔也得到了快速发展,用于加速粒子束——正如 20 世纪 90 年代 LHC 前身 LEP 的升级以及如今欧洲 X 射线自由电子激光器和可能的线性对撞机的实现所展示的那样。高温超导体有望实现性能飞跃,30 年前人们就发现了高温超导体,但至今仍是一个谜。欧洲核子研究中心正在这一领域取得重要进展,并已启动培训下一代超导研究人员的计划。粒子物理学与工业界一起帮助我们实现全部
大型强子对撞机是欧洲核子研究中心日内瓦设施建造的粒子加速器,其主要目标是研究宇宙知识标准模型中著名的基本粒子的边界。借助 LHC,2012 年对希格斯玻色子等的观测成为可能,随着加速器设计的不断升级,未来几年将描述新的现象。TDE 块构成光束轨迹最后一段的光束倾卸系统,由多个不同密度的石墨块制成。其中,柔性石墨的密度最低(1-1.2 g/cm3)。它与多晶石墨和热解石墨等典型的石墨形式不同,因为在生产过程中不添加粘合剂。由于颗粒粗糙度引起的粘合摩擦力赋予材料典型的柔韧性并有助于变形机制。为了预测材料在梁冲击能量增加时的反应,需要在广泛的温度和应变率范围内深入研究材料行为。在这项初步工作中,在室温下在平面方向上观察了商用柔性石墨(SGL Carbon 的 Sigraflex ®)的静态特性。为了可靠地测量前部和边缘样品表面的应变,采用了两侧 DIC;横梁位移速率在 0.01-10 mm/min 之间变化。最后,讨论了应力应变行为和变形机制。
𝑆𝑈(𝑁𝑁)仪表理论会经历反馈相变[1]。对这种过渡的非扰动研究从许多角度就可以对Yang-Mills理论的动力学有宝贵的见解。例如,一个人可以表征热力学可观察物的行为,这是颜色数量𝑁𝑁[2-4]的函数。早期宇宙中的一阶相变给引力波的烙印(例如参见参考文献。[5 - 8])。这打开了令人兴奋的可能性,即将重力波用作标准模型以外的物理探针的其他探针。除其他应用外,该程序与标准模型的扩展相关,该标准模型提出了HIGGS领域,新的Top-Quark合作伙伴或暗物质候选者的综合性质,例如基于𝑆𝑝(4)仪表理论的候选者,最近在数字上研究了,例如参考。[9 - 13]。要理解由给定理论中相变的引力波的强度,需要对相关可观察物的非扰动计算进行。在此贡献中,我们使用线性对数松弛(LLR)算法[14]在𝑆𝑈(3)Yang-Mills中报告了计算。对于该系统,最近在参考文献中提供了对潜热的高精度计算。[15]。使用与我们在这里讨论的类似方法的计算,但是在参考文献中讨论了靶标𝑆𝑈(4)。[16]。这项工作的一部分已在参考文献中报告。[17],我们将读者推荐给读者进行互补讨论。正在准备更广泛的出版物[18]。本工作的其余部分的结构如下。在教派中。2我们提供了晶格系统的描述,算法的博览会以及对数值实现的讨论。第3节报告了我们的数值发现。最后,我们的结论和未来工作的概述是在本节中给出的。4。
引言 - 在发现[1,2]一个多世纪后,超导性仍然是凝聚态物理学中最深入研究的主题之一,与物质的最基本描述具有深厚的联系[3-6]。这种宏观量子现象的特征在于零电阻,而希格斯则缩合光子大量[3,5,7]以下[3,5,7]低于某些临界温度t c。由具有较小相关效应的良好金属产生的超导体(常规的低t c超导通孔)。在BCS理论中,由于电子之间有效的吸引力,这一现象源于费米表面(FS)的不稳定性。最初,声子的交换介导了该效果。在密切相关的费米子系统(例如繁重的费米子[9,10]和高t c超导性[11-15]中,发现非常规超导性具有淋巴结间隙[11-15],强调了其他玻色子也可能负责配对。在非常规的超导体[16]中,配对机制通常涉及复杂的相互作用,例如自旋波动,电子相关性或轨道效应,导致非平凡的对称性和动量依赖性超导差距。在高t c铜矿中,通过相位敏感的测量结果建立了FS上差距中的节点[17],以确保间隙是具有D x 2-2-y 2波对称性的旋转单元。此外,已经预测并观察到了巡回铁磁体中的p波,可能是p波,旋转三芯对配对[18-22]。最后,已广泛考虑了磁化绝缘体异质结构和各种无间隙的效率系统的镁介导的非常规的超导性[23 - 37]。
量子涡旋是量子超流体中的拓扑缺陷,在宏观尺度上,这些阶段揭示了量子性。量子涡流物质是一个有趣而多学科的研究领域[1-3],它吸引了理论家和实验家。虽然在超级流体制度中深处的精力激励上,但涡流的凝结为理解相邻的非沉积阶段和相关的相变提供了自然框架[4-6]。在旋转整个系统的情况下,在低温下出现了超流体涡流中的丰度[7-10]。正如Abrikosov [11]在外部磁场中与II型超导体紧密相关的上下文中首先发现的,在热力学极限下,常规涡流晶体基态可以出现。它会自发打破(磁)翻译和旋转对称性。在二维极限中,对低能集体激发(称为Tkachenko Waves [12])的研究一直是广泛理论上的主题,如[13 - 24]这样的作品所证明的。此外,在冷原子实验中,在极低的温度下成功地进行了对Tkachenko波的实验观察[25]。值得注意的是,也有人建议Tkachenko模式可以解释脉冲星的动力学[26]。鉴于涡旋的两个横向笛卡尔坐标构成了一对规范的变量[8,27 - 29],因此涡旋代表了固有的模糊实体,其本质上的模糊实体与不成比例的面积与基本玻色子密度成反比。因此,随着晶体内的涡流密度接近玻色子密度的大小,涡旋位置中的量子机械波动与涡流之间的距离相当。粗略估计依赖于Lindemann标准和小规模的精确对角线数值模拟,表明当填充分数大约在1到10之间时,涡流晶体会在零温度下实现量子熔化[8]。在这里,填充分数在以下内容中称为ν,定义为玻色子密度n b和涡流密度,n v之间的比率。这种量子熔化现象的确切性质仍然很糟糕,代表了该领域的长期挑战。分形式弹性双重性[30 - 37]及其前身[38 - 42]提供了一种出色的框架,以研究可能的熔融机制,因为它自然融合了脱节和错位,这些脱位和位错是固体中拓扑缺陷[43]。一个人也可以轻松地掺入va-cancy和间质缺陷[31,34]。在这种形式主义中,量子熔化可以通过一系列的相变实现,其中动态缺陷场扮演了希格斯字段的作用。这种方法在[44]中率先进行的涡流晶体研究中发现了实际应用。除了对各种缺陷之间的静态相互作用的计算之外,这还发现了几个连续的量子希格斯过渡,这些过渡是由缺陷的凝结触发的。在本文中,我们提供了有关二维超氟涡流晶体量子熔化的新见解。值得注意的是,发现涡流晶体的量子熔化可能是由空缺或间质的凝结来提到的,导致最初在经典的有限限制性问题中研究的含量涡旋超固体的出现[45,46]。我们的起点是tkachenko模式的有效理论,在二次近似中,该理论降低了紧凑型标量场的Lifshitz理论[21,24,46,47]。这是快速旋转极限的超氟涡流晶体的良好粗粒描述,其中冷凝水仅占据了最低的Landau水平。在该领域理论中,我们讨论了对称范围的磁性顶点算子的命运,这些磁性顶点算子在特殊条件下与涡流晶体中的空位和间质缺陷相对应。从先前的工作中汲取灵感[5,48],我们确定哪种填充ν这样的磁性顶点操作员在重生群体(RG)sense