在2022年推出后,使用Chatgpt爆炸了,三个月后仅五天又十亿个用户(Valova,Mladenova和Kanev 2024)。AI技术的使用是一场激烈的辩论,最近在学校环境中创建了大头条新闻(Silva,Ramos,de Moraes和Santos 2024)。它可能会对学生的教育产生积极和负面的潜在影响,在这种教育中,学习能力,批判性思维和作弊风险受到影响(同上)。chatgpt对教师来说是一个挑战,因为它仍然是新的,有些学生使用AI技术来欺骗和完成任务,而无需对收集的信息进行批判性思考。Chatgpt提供的信息并不总是准确的,用户必须始终考虑如何提出他们的问题。有时您甚至不得不提出多个问题才能达到所需的答案。
●计算机视觉和机器学习应用在Heliophysics中的应用,包括:太阳能磁性太阳能活动(耀斑,CMES,颗粒)太阳能风太空空间天气和空间气候气候地机无线电循环无线电射击
回归是预测连续价值的过程。我们可以使用回归方法来预测使用其他一些变量的连续值,例如CAR模型的CO2发射。例如,让我们假设我们可以访问包含与来自不同汽车的CO2排放相关的数据的数据集。数据集包含诸如汽车发动机尺寸,气缸数,燃油消耗量和来自各种汽车型号的CO2排放之类的属性。现在,我们有兴趣估计其生产后新车模型的近似CO2发射。使用机器学习回归模型这是可能的。在回归中,有两种类型的变量:一个因变量和一个或多个自变量。因变量是我们研究和尝试预测的“状态”,“目标”或“最终目标”,而自变量(也称为解释变量)是这些“状态”的“原因”。自变量通常通过x显示,并且因变量用y表示。回归模型将y或因变量与x的函数相关联,即自变量。回归的关键点是因变量值应该是连续的,而不是离散值。但是,可以在分类或连续测量量表上测量自变量或变量。回归的类型:基本上,回归模型有两种类型:简单回归和多重回归。简单回归是当使用一个自变量来估计因变量时。它可以在非线性上是线性的。例如,使用“汽车的发动机尺寸”预测CO2排放。回归的线性基于自变量和因变量之间关系的性质。存在多个自变量时,该过程称为多个线性回归。例如,使用变量“汽车的发动机尺寸”和“汽车中存在的气缸数”来预测CO2排放。再次取决于因变量和自变量之间的关系,多个线性回归可以是线性或非线性回归。
热医学学会第 38 届年会将提供一个平台,展示医学、工程、物理学、材料科学、生物学和免疫学背景下我们对热医学不断扩展的理解的最新数据、概念和突破。主题演讲和全体会议发言人将重点介绍热医学的临床应用、肿瘤免疫学、物理学、生物学、成像和热状态之间的广泛联系。国际思想领袖将主持分组会议,讨论以下问题:
抽象教育是改变知识的一种方式,以便人类能够发展潜力。教育鼓励每个人发展并适应不断变化的时代,例如技术领域的进步。学生的学习成绩是成功管理学习计划的关键指标。学术绩效检测可以帮助研究计划经理监视并对有可能遇到困难的学生采取积极行动。机器学习可以是通过帮助分类和检测学生学术能力来克服这一挑战的解决方案。机器学习技术已被证明非常有效地分析复杂的数据并揭示了人们难以检测的隐藏模式。本研究旨在探索在检测学生学业表现的机器学习算法的实施,尤其是在NIAS大学数学教育研究计划中。随着技术进步,机器学习已被证明在分类数据和检测传统方法无法识别的隐藏模式方面有效。本研究使用支持向量机(SVM)算法根据从学生主要数据中收集的数据集来预测学生的学习成绩。数据集包括各种因素,例如GPA值,出勤,参与和学习资源的使用。在要使用的方法中,将使用调查表收集数据,其中有许多受访者多达193人。已收集的数据将使用SVM处理,以在预测学生的学习成绩中获得结果。分析结果表明,使用的SVM模型的精度为77.59%,在学业表现良好的学生班级中的偏见更加倾向。这项研究的结果有望在开发更有效的学习方法和对三级机构的学术干预的个性化方面做出实际贡献。关键字:机器学习,学业表现和支持向量机
人们越来越多地与诸如可穿戴传感器,VR/AR耳机或其他数据收集系统等技术相互作用,并成功地模糊了物理和数字之间的界限;身体及其与环境的互动。同时,这些传感技术的非自愿数据收集和机器主导的决策加剧了历史上的不平等,尤其是影响边缘化群体。通过新技术解决人类运动,思想和经验是一项持续的挑战,需要新型的创造性和想象力的艺术实践。
评估 ML 算法的性能 UNIT - I:简介:AI 问题、代理和环境、代理结构、问题解决代理基本搜索策略:问题空间、无信息搜索(广度优先、深度优先搜索、深度优先与迭代深化)、启发式搜索(爬山法、通用最佳优先、A*)、约束满足(回溯、局部搜索) UNIT - II:高级搜索:构建搜索树、随机搜索、AO* 搜索实现、极小极大搜索、Alpha-Beta 剪枝基本知识表示和推理:命题逻辑、一阶逻辑、前向链接和后向链接、概率推理简介、贝叶斯定理 UNIT - III:机器学习:简介。机器学习系统,学习形式:监督学习和无监督学习,强化 – 学习理论 – 学习可行性 – 数据准备 – 训练与测试和拆分。第四单元:监督学习:回归:线性回归、多元线性回归、多项式回归、逻辑回归、非线性回归、模型评估方法。分类:支持向量机 (SVM)、朴素贝叶斯分类
纳米材料具有独特的性质,例如高表面积、增强的反应性以及可调的物理和化学特性,并且在重金属检测方面显示出巨大的潜力。特定功能化的量子点可与特定分析物结合。特定的结合能力会引起电子特性的变化,从而引起传感器基质的化学电阻响应。从这个角度来看,开发了一种与汞离子结合的传感器基质。然后将该传感器基质印刷在条带上,以便能够测量条带暴露于分析物(甲基汞)时电阻率的变化。可以使用掌上设备测量电阻率的变化,该设备显示水样中的汞污染水平。在掺有甲基汞的真实水样以及鱼血样本中测试了污染水平。
制服政策和计划更新 - 2024 年 2 月 NAVADMIN 031/24 | 情况说明书 本 NAVADMIN 宣布了海军制服政策的更新。这些更新是根据水手的反馈、指挥部赞助的请求和海军领导层的指示得出的。政策更新包括授权将手放在制服口袋和体能训练服的紧身裤中,以及恢复女性可选的晚礼服头饰和女性可选的组合罩(桶形)。正在进行的举措包括继续为怀孕水手提供免费制服的产妇试点计划、尺寸现代化计划和制服调查。阅读 NAVADMIN 031/24 以获取完整的更新列表。战士的坚韧,锻炼你的思想、身体和精神