图2。(a)使用基于有机的(MEOH-DMSO)电解浴的循环伏安图在ITO底物上以10 mV.s-1的扫描速率记录。(b)选定的循环伏安法扫描后,Ni 3(HITP)2个沉积物的SEM图像。(C) The chronoamperograms (normalized current density) and the corresponding cumulative deposition charge density for potentiostatic anodic deposition methods by using the continuous (dark colored line) and square pulsed (light colored line) methods (with t on = 1 min, V on = 0.8 V; and t off = 1 min, V off = open circuit voltage).(d)Ni 3(HITP)2个沉积物的相应SEM图像通过电位连续(深色轮廓)和脉冲沉积(浅色轮廓)获得。
事实上,不同批次的材料物理性质可能会有显著差异,因为普通实验室环境不像工业或大规模环境那样受控;造成批次间差异的传统原因是使用并非专用于某一工艺的玻璃器皿、由于处理和不同供应商而导致的试剂和溶剂差异,甚至是特定实验室内不同季节或不同房间的温度和湿度差异。由于这些考虑,确定应优化哪些参数以获得理想的设备性能并不总是那么容易。为了阐明这个问题,我们在一个实验室中合成了几批次的 Ni3(HITP)2,尽可能使用相同的起始材料和溶剂,并将它们用作 KOH 水性电解质中的超级电容器电极。目标是辨别 MOF 批次的物理性质对设备性能的影响。Ni3(HITP)2 的特点是具有强烈的各向异性结构。配体由芳香族三苯单元组成,这些单元表现出很强的电子离域性,通过亚胺键(更准确地说是亚氨基半醌)与镍中心结合。配体和方平面 Ni 2+ 离子形成石墨烯状二维薄片,其堆叠形成直径约为 1.6 nm 的管状圆柱形通道。合成了三批 Ni 3 (HITP) 2 MOF,这里用 HITP_A、HITP_B 和 HITP_C 表示。它们是以之前发表的方法 8 作为合成条件的起点来制备的,然后根据 ESI 中的描述略有变化,† 产生了相同类型的 MOF 材料,但物理性质差异很大,如表 1 所示。三个样品的电导率分别跨越两个数量级,从 2·10·4 S cm 1 到 4·10·2 S cm 1 (对于 HITP_A 和 HITP_C)。通过拟合在 77 K 下测得的 N 2 吸附等温线确定的 BET 表面积相差三倍,从 260 m 2 g 1 到 825 m 2
DOX Doxorubicin DPA Dipicolinic acid dpa 9,10-diphenylanthracene dppztz 2,5-bis-(4-(4-pyridinyl)-phenyl)-thiazolo-[5,4- d ]-thiazole dpta 4-amino-3,5-diphenyl-1,2,4-triazole DSSC Dye-sensitized solar cell EMF Electro-motive force emi 1-ethyl-3-methylimidazolium EPR Electron paramagnetic resonance ESA Excited-state absorption ET Energy transfer etim Ethylimidazole ETU Energy transfer upconversion Fc Ferrocene FRET Förster resonance energy transfer FTIR Fourier-transform infrared FTO Fluorine-doped tin oxide Fu Fluorouracil G Guest GO Graphene oxide H Host HAADF-STEM High-angle annular dark-field scanning transmission electron microscopy HAB Hexaaminobenzene HENU Henan University HER Hydrogen evolution reaction hhtp Hexahydrotriphenylene hitp 2,3,6,7,10,11-hexaiminotriphenylene hmba Hydroxymethylbenzoate HP Hairpin probe hpdc 1 H -Pyrazole-3,5-二甲基甲酸HPLC高效液相色谱HPU HPU HENAN POYTECHNIC UNIXPAY
金属有机框架(MOF)是气体传感的有前途的材料,但通常仅限于一次性检测。杂交策略被证明是在高性能独立的化学疗法中协同部署导电MOF(C MOF)和导电聚合物(C PS)作为两个互补的混合离子电导体。这项工作提出了i)传感器恢复动力学的显着改进,ii)循环稳定性和iii)在室温下的动态范围。基于2,3,6,7,11,11-11-11-11-羟基二羟基二苯乙烯(HHTP)和2,3,6,7,7,11111111111111-11-111-11-111-11-11-111-11-111-111-111-111-11-111-111-111-111-111-11-111-111-111-11-111-111-111-111-111-11-111-111-111-111-11-1111111111111-11-111-111-111-111-111-111111-111--己酮(HITP),带有各种金属nodes(CO))进行了一项全面的机械研究,以通过感应热力学和结合动力学在MOFS和聚合物之间的异质结与聚合物之间的杂孔对齐。发现杂交时C MOF成分的孔富集会导致解吸动力学的选择性增强,从而在室温下显着改善了传感器的恢复,从而可以长期响应保留。该机制得到了关于吸刺 - 分析物相互作用的密度功能理论的进一步支持。还发现,合金C PS和C MOF可以使可容纳的薄膜加工和设备集成,有可能解锁这些混合导体在不同的电子应用中的使用。